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Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation

The Gauss-Seidel Method

Looking at the Jacobi Method
A possible improvement to the Jacobi Algorithm can be seen by
re-considering

x (k)
i =

1
aii

 n∑
j=1
j 6=i

(
−aijx

(k−1)
j

)
+ bi

 , for i = 1, 2, . . . , n

The components of x(k−1) are used to compute all the
components x (k)

i of x(k).

But, for i > 1, the components x (k)
1 , . . . , x (k)

i−1 of x(k) have already
been computed and are expected to be better approximations to
the actual solutions x1, . . . , xi−1 than are x (k−1)

1 , . . . , x (k−1)
i−1 .
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The Gauss-Seidel Method
Instead of using

x (k)
i =

1
aii

 n∑
j=1
j 6=i

(
−aijx

(k−1)
j

)
+ bi

 , for i = 1, 2, . . . , n

it seems reasonable, then, to compute x (k)
i using these most recently

calculated values.

The Gauss-Seidel Iterative Technique

x (k)
i =

1
aii

− i−1∑
j=1

(aijx
(k)
j )−

n∑
j=i+1

(aijx
(k−1)
j ) + bi


for each i = 1, 2, . . . , n.
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The Gauss-Seidel Method
Example
Use the Gauss-Seidel iterative technique to find approximate solutions
to

10x1 − x2 + 2x3 = 6
−x1 + 11x2 − x3 + 3x4 = 25
2x1 − x2 + 10x3 − x4 = −11

3x2 − x3 + 8x4 = 15

,

starting with x = (0, 0, 0, 0)t and iterating until

‖x(k) − x(k−1)‖∞
‖x(k)‖∞

< 10−3

Note: The solution x = (1, 2, −1, 1)t was approximated by Jacobi’s
method in an earlier example.
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The Gauss-Seidel Method

Solution (1/3)
For the Gauss-Seidel method we write the system, for each
k = 1, 2, . . . as

x (k)
1 =

1
10

x (k−1)
2 − 1

5
x (k−1)

3 +
3
5

x (k)
2 =

1
11

x (k)
1 +

1
11

x (k−1)
3 − 3

11
x (k−1)

4 +
25
11

x (k)
3 = −1

5
x (k)

1 +
1
10

x (k)
2 +

1
10

x (k−1)
4 − 11

10

x (k)
4 = − 3

8
x (k)

2 +
1
8

x (k)
3 +

15
8
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The Gauss-Seidel Method

Solution (2/3)

When x(0) = (0, 0, 0, 0)t , we have
x(1) = (0.6000, 2.3272, −0.9873, 0.8789)t .

Subsequent iterations give
the values in the following table:

k 0 1 2 3 4 5

x (k)
1 0.0000 0.6000 1.030 1.0065 1.0009 1.0001

x (k)
2 0.0000 2.3272 2.037 2.0036 2.0003 2.0000

x (k)
3 0.0000 −0.9873 −1.014 −1.0025 −1.0003 −1.0000

x (k)
4 0.0000 0.8789 0.984 0.9983 0.9999 1.0000
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The Gauss-Seidel Method

Solution (3/3)
Because

‖x(5) − x(4)‖∞
‖x(5)‖∞

=
0.0008
2.000

= 4× 10−4

x(5) is accepted as a reasonable approximation to the solution.

Note that, in an earlier example, Jacobi’s method required twice as
many iterations for the same accuracy.
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The Gauss-Seidel Method: Matrix Form

Re-Writing the Equations
To write the Gauss-Seidel method in matrix form,

multiply both sides of

x (k)
i =

1
aii

− i−1∑
j=1

(aijx
(k)
j )−

n∑
j=i+1

(aijx
(k−1)
j ) + bi


by aii and collect all k th iterate terms, to give

ai1x (k)
1 + ai2x (k)

2 + · · ·+ aiix
(k)
i = −ai,i+1x (k−1)

i+1 − · · · − ainx (k−1)
n + bi

for each i = 1, 2, . . . , n.
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The Gauss-Seidel Method: Matrix Form

Re-Writing the Equations (Cont’d)
Writing all n equations gives

a11x
(k)
1 = −a12x

(k−1)
2 − a13x

(k−1)
3 − · · · − a1nx

(k−1)
n + b1

a21x
(k)
1 + a22x

(k)
2 = −a23x

(k−1)
3 − · · · − a2nx

(k−1)
n + b2

.

.

.

an1x
(k)
1 + an2x

(k)
2 + · · · + annx

(k)
n = bn

With the definitions of D, L, and U given previously, we have the
Gauss-Seidel method represented by

(D − L)x(k) = Ux(k−1) + b

Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 11 / 38
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The Gauss-Seidel Method: Matrix Form

(D − L)x(k) = Ux(k−1) + b

Re-Writing the Equations (Cont’d)

Solving for x(k) finally gives

x(k) = (D − L)−1Ux(k−1) + (D − L)−1b, for each k = 1, 2, . . .

Letting Tg = (D − L)−1U and cg = (D − L)−1b, gives the Gauss-Seidel
technique the form

x(k) = Tgx(k−1) + cg

For the lower-triangular matrix D − L to be nonsingular, it is necessary
and sufficient that aii 6= 0, for each i = 1, 2, . . . , n.
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Gauss-Seidel Iterative Algorithm (1/2)

To solve Ax = b given an initial approximation x(0):

INPUT the number of equations and unknowns n;
the entries aij , 1 ≤ i , j ≤ n of the matrix A;
the entries bi , 1 ≤ i ≤ n of b;
the entries XOi , 1 ≤ i ≤ n of XO = x(0);
tolerance TOL;
maximum number of iterations N.

OUTPUT the approximate solution x1, . . . , xn or a message
that the number of iterations was exceeded.
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Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation

Gauss-Seidel Iterative Algorithm (2/2)

Step 1 Set k = 1
Step 2 While (k ≤ N) do Steps 3–6:

Step 3 For i = 1, . . . , n

set xi =
1
aii

− i−1∑
j=1

aijxj −
n∑

j=i+1

aijXOj + bi


Step 4 If ||x− XO|| < TOL then OUTPUT (x1, . . . , xn)

(The procedure was successful)
STOP

Step 5 Set k = k + 1
Step 6 For i = 1, . . . , n set XOi = xi

Step 7 OUTPUT (‘Maximum number of iterations exceeded’)
STOP (The procedure was unsuccessful)
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Gauss-Seidel Iterative Algorithm (2/2)

Step 1 Set k = 1
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set xi =
1
aii

− i−1∑
j=1

aijxj −
n∑

j=i+1

aijXOj + bi
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Gauss-Seidel Iterative Algorithm
Comments on the Algorithm

Step 3 of the algorithm requires that aii 6= 0, for each
i = 1, 2, . . . , n.

If one of the aii entries is 0 and the system is
nonsingular, a reordering of the equations can be performed so
that no aii = 0.
To speed convergence, the equations should be arranged so that
aii is as large as possible.
Another possible stopping criterion in Step 4 is to iterate until

‖x(k) − x(k−1)‖
‖x(k)‖

is smaller than some prescribed tolerance.
For this purpose, any convenient norm can be used, the usual
being the l∞ norm.
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Outline

1 The Gauss-Seidel Method

2 The Gauss-Seidel Algorithm

3 Convergence Results for General Iteration Methods

4 Application to the Jacobi & Gauss-Seidel Methods
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Convergence Results for General Iteration Methods

Introduction
To study the convergence of general iteration techniques, we need
to analyze the formula

x(k) = T x(k−1) + c, for each k = 1, 2, . . .

where x(0) is arbitrary.
The following lemma and the earlier Theorem on convergent
matrices provide the key for this study.
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Convergence Results for General Iteration Methods

Lemma
If the spectral radius satisfies ρ(T ) < 1, then (I − T )−1 exists, and

(I − T )−1 = I + T + T 2 + · · · =
∞∑

j=0

T j

Proof (1/2)
Because Tx = λx is true precisely when (I − T )x = (1− λ)x, we
have λ as an eigenvalue of T precisely when 1− λ is an
eigenvalue of I − T .
But |λ| ≤ ρ(T ) < 1, so λ = 1 is not an eigenvalue of T , and 0
cannot be an eigenvalue of I − T .
Hence, (I − T )−1 exists.
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Convergence Results for General Iteration Methods

Proof (2/2)
Let

Sm = I + T + T 2 + · · ·+ T m

Then

(I−T )Sm = (1+T +T 2 + · · ·+T m)− (T +T 2 + · · ·+T m+1) = I−T m+1

and, since T is convergent, the Theorem on convergent matrices
implies that

lim
m→∞

(I − T )Sm = lim
m→∞

(I − T m+1) = I

Thus, (I − T )−1 = limm→∞ Sm = I + T + T 2 + · · · =
∑∞

j=0 T j
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Convergence Results for General Iteration Methods

Theorem
For any x(0) ∈ IRn, the sequence {x(k)}∞k=0 defined by

x(k) = Tx(k−1) + c, for each k ≥ 1

converges to the unique solution of

x = T x + c

if and only if ρ(T ) < 1.
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Convergence Results for General Iteration Methods

Proof (1/5)
First assume that ρ(T ) < 1.

Then,

x(k) = Tx(k−1) + c
= T (T x(k−2) + c) + c
= T 2x(k−2) + (T + I)c
...
= T kx(0) + (T k−1 + · · ·+ T + I)c

Because ρ(T ) < 1, the Theorem on convergent matrices implies that T
is convergent, and

lim
k→∞

T kx(0) = 0
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Convergence Results for General Iteration Methods

Proof (2/5)
The previous lemma implies that

lim
k→∞

x(k) = lim
k→∞

T kx(0) +

 ∞∑
j=0

T j

 c

= 0 + (I − T )−1c

= (I − T )−1c

Hence, the sequence {x(k)} converges to the vector x ≡ (I − T )−1c
and x = Tx + c.
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Convergence Results for General Iteration Methods

Proof (3/5)
To prove the converse, we will show that for any z ∈ IRn, we have
limk→∞ T kz = 0.

Again, by the theorem on convergent matrices, this is equivalent
to ρ(T ) < 1.
Let z be an arbitrary vector, and x be the unique solution to
x = T x + c.
Define x(0) = x− z, and, for k ≥ 1, x(k) = Tx(k−1) + c.
Then {x(k)} converges to x.
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Convergence Results for General Iteration Methods

Proof (4/5)
Also,

x− x(k) = (Tx + c)−
(

T x(k−1) + c
)

= T
(

x− x(k−1)
)

so
x− x(k) = T

(
x− x(k−1)

)
= T 2

(
x− x(k−2)

)
=

...
= T k

(
x− x(0)

)
= T kz
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Convergence Results for General Iteration Methods

Proof (5/5)
Hence

lim
k→∞

T kz = lim
k→∞

T k
(

x− x(0)
)

= lim
k→∞

(
x− x(k)

)
= 0

But z ∈ IRn was arbitrary, so by the theorem on convergent
matrices, T is convergent and ρ(T ) < 1.
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Convergence Results for General Iteration Methods

Corollary
‖T‖ < 1 for any natural matrix norm and c is a given vector, then the
sequence {x(k)}∞k=0 defined by

x(k) = T x(k−1) + c

converges, for any x(0) ∈ IRn, to a vector x ∈ IRn, with x = Tx + c, and
the following error bounds hold:

(i) ‖x− x(k)‖ ≤ ‖T‖k‖x(0) − x‖

(ii) ‖x− x(k)‖ ≤ ‖T‖k

1−‖T‖‖x
(1) − x(0)‖

The proof of the following corollary is similar to that for the Corollary to
the Fixed-Point Theorem for a single nonlinear equation.
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Convergence of the Jacobi & Gauss-Seidel Methods

Using the Matrix Formulations
We have seen that the Jacobi and Gauss-Seidel iterative techniques
can be written

x(k) = Tjx(k−1) + cj and

x(k) = Tgx(k−1) + cg

using the matrices

Tj = D−1(L + U) and Tg = (D − L)−1U

respectively. If ρ(Tj) or ρ(Tg) is less than 1, then the corresponding
sequence {x(k)}∞k=0 will converge to the solution x of Ax = b.
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Convergence of the Jacobi & Gauss-Seidel Methods

Example
For example, the Jacobi method has

x(k) = D−1(L + U)x(k−1) + D−1b,

and, if {x(k)}∞k=0 converges to x, then

x = D−1(L + U)x + D−1b

This implies that

Dx = (L + U)x + b and (D − L− U)x = b

Since D − L− U = A, the solution x satisfies Ax = b.
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Convergence of the Jacobi & Gauss-Seidel Methods

The following are easily verified sufficiency conditions for convergence
of the Jacobi and Gauss-Seidel methods.

Theorem
If A is strictly diagonally dominant, then for any choice of x(0), both the
Jacobi and Gauss-Seidel methods give sequences {x(k)}∞k=0 that
converge to the unique solution of Ax = b.
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Convergence of the Jacobi & Gauss-Seidel Methods

Is Gauss-Seidel better than Jacobi?

No general results exist to tell which of the two techniques, Jacobi
or Gauss-Seidel, will be most successful for an arbitrary linear
system.
In special cases, however, the answer is known, as is
demonstrated in the following theorem.
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Convergence of the Jacobi & Gauss-Seidel Methods

(Stein-Rosenberg) Theorem
If aij ≤ 0, for each i 6= j and aii > 0, for each i = 1, 2, . . . , n, then one
and only one of the following statements holds:

(i) 0 ≤ ρ(Tg) < ρ(Tj) < 1
(ii) 1 < ρ(Tj) < ρ(Tg)

(iii) ρ(Tj) = ρ(Tg) = 0
(iv) ρ(Tj) = ρ(Tg) = 1

For the proof of this result, see pp. 120–127. of

Young, D. M., Iterative solution of large linear systems, Academic
Press, New York, 1971, 570 pp.
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Convergence of the Jacobi & Gauss-Seidel Methods

Two Comments on the Thoerem
For the special case described in the theorem, we see from part
(i), namely

0 ≤ ρ(Tg) < ρ(Tj) < 1

that when one method gives convergence, then both give
convergence, and the Gauss-Seidel method converges faster than
the Jacobi method.
Part (ii), namely

1 < ρ(Tj) < ρ(Tg)

indicates that when one method diverges then both diverge, and
the divergence is more pronounced for the Gauss-Seidel method.
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Questions?



Eigenvalues & Eigenvectors: Convergent Matrices

Theorem
The following statements are equivalent.

(i) A is a convergent matrix.
(ii) limn→∞ ‖An‖ = 0, for some natural norm.
(iii) limn→∞ ‖An‖ = 0, for all natural norms.
(iv) ρ(A) < 1.
(v) limn→∞ Anx = 0, for every x.

The proof of this theorem can be found on p. 14 of Issacson, E. and H.
B. Keller, Analysis of Numerical Methods, John Wiley & Sons, New
York, 1966, 541 pp.

Return to General Iteration Methods — Introduction

Return to General Iteration Methods — Lemma

Return to General Iteration Methods — Theorem



Fixed-Point Theorem
Let g ∈ C[a, b] be such that g(x) ∈ [a, b], for all x in [a, b]. Suppose, in
addition, that g′ exists on (a, b) and that a constant 0 < k < 1 exists
with

|g′(x)| ≤ k , for all x ∈ (a, b).

Then for any number p0 in [a, b], the sequence defined by

pn = g(pn−1), n ≥ 1

converges to the unique fixed point p in [a, b].

Return to the Corrollary to the Fixed-Point Theorem



Functional (Fixed-Point) Iteration

Corrollary to the Fixed-Point Convergence Result
If g satisfies the hypothesis of the Fixed-Point Theorem then

|pn − p| ≤ kn

1− k
|p1 − p0|

Return to the Corollary to the Convergence Theorem for General Iterative Methods
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