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Gauss-Seidel Method

The Gauss-Seidel Method

Looking at the Jacobi Method

@ A possible improvement to the Jacobi Algorithm can be seen by
re-considering

1 _ .
X9 = L §:<—aijxj(k 1)>+b,- ., fori=1,2,...,n
ajj =
J#
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1 _ .
X9 = L §:<—aijxj(k 1)>+b,- ., fori=1,2,...,n
ajj =
J#

@ The components of x(*~1) are used to compute all the
components x) of x(®).
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The Gauss-Seidel Method

Looking at the Jacobi Method

@ A possible improvement to the Jacobi Algorithm can be seen by
re-considering

1 _ .
X9 = L §:<—aijxj(k 1))+b,- ., fori=1,2,...,n
ajj =
J#

@ The components of x(*~1) are used to compute all the
components x) of x(®).

@ But, for i > 1, the components x1(k), ... ,x,.(ﬂ of x(¥) have already

been computed and are expected to be better approximations to

: — k—1
the actual solutions Xy, ..., x;_; than are x1(k 1), . ,x,.(q ),
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Gauss-Seidel Method

The Gauss-Seidel Method

Instead of using

n
x.(k):l Z(—a,-jxj(k_”)er,- , fori=1,2,....n

it seems reasonable, then, to compute x,(k) using these most recently
calculated values.
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The Gauss-Seidel Method

Instead of using

n
x.(k):l Z(—aijx.(k_”)er,- , fori=1,2,....n

it seems reasonable, then, to compute x,(k) using these most recently
calculated values.

1| < . _
Xi(k) = 5. | Z(aijxj(k)) - Z (ainj(k 1)) + b;

Jj=1 J=i+1

foreachi=1,2,... n.
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Gauss-Seidel Method

The Gauss-Seidel Method

Use the Gauss-Seidel iterative technique to find approximate solutions
to

10x1 — X0+ 2X3 =6
X1 +11xo — x5+ 3x4 =25
2x1 —  Xo+ 10x3 — X4:—11’

3Xo — Xx3+8x4 =15
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The Gauss-Seidel Method
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10x1 — X0+ 2X3 =6
X1 +11xo — x5+ 3x4 =25
2x1 —  Xo+ 10x3 — X4:—11’

3Xo — Xx3+8x4 =15
starting with x = (0, 0,0, 0)!
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The Gauss-Seidel Method

Use the Gauss-Seidel iterative technique to find approximate solutions
to

10x1 — X0+ 2X3 =6
X1 +11xo — x5+ 3x4 =25
2x1 —  Xo+ 10x3 — X4:—11’

3Xo — Xx3+8x4 =15
starting with x = (0,0, 0,0)! and iterating until

Hx(k) _ x(k—1

Il
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Gauss-Seidel Method

The Gauss-Seidel Method

Use the Gauss-Seidel iterative technique to find approximate solutions
to

10x1 — X0+ 2X3 =6
X1 +11xo — x5+ 3x4 =25
2x1 —  Xo+ 10x3 — X4:—11’

3Xo — Xx3+8x4 =15
starting with x = (0,0, 0,0)! and iterating until

Hx(k) _ x(k—1
% | oo

)
loo <1078

Note: The solution x = (1, 2, —1, 1)! was approximated by Jacobi’s
method in an earlier example.

Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods I R L Burden & J D Faires 6/38



Gauss-Seidel Method

The Gauss-Seidel Method

Solution (1/3)

For the Gauss-Seidel method we write the system, for each
k=1,2,...as

x®) = 1170)(2(k71) 5 %XS(kq) . g
X = 11—1x1(k) o %Xa(k_” %X‘Ek—n N %
X = —;X1(k) + 110x§k) il 110X£k_1) B 1(1)
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Gauss-Seidel Method

The Gauss-Seidel Method

Solution (2/3)

When x(© = (0, 0, 0, 0)!, we have
x(1) = (0.6000, 2.3272, —0.9873, 0.8789)".
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Gauss-Seidel Method

The Gauss-Seidel Method

Solution (2/3)

When x(© = (0, 0, 0, 0)!, we have
x(M) = (0.6000, 2.3272, —0.9873, 0.8789)!. Subsequent iterations give
the values in the following table:

k 0 1 2 3 4 5

x") 00000 06000 1.030 1.0065 1.0009  1.0001
x 0.0000 23272 2037 20036 20003 2.0000
x¥) 0.0000 -0.9873 —1.014 —1.0025 —1.0003 —1.0000
x) 00000 08789 0.984 0.9983 0.9999  1.0000
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Gauss-Seidel Method

The Gauss-Seidel Method

Because
]|x(5) — x(“)Hoo ~0.0008

= =4x107*
XO] 2000 <10

x(®) is accepted as a reasonable approximation to the solution.
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Gauss-Seidel Method

The Gauss-Seidel Method

Solution (3/3)
Because

Ix® — x@| .  0.0008

= =4x107*
XO] 2000 <10

x(®) is accepted as a reasonable approximation to the solution.

Note that, in an earlier example, Jacobi’'s method required twice as
many iterations for the same accuracy.
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Gauss-Seidel Method

The Gauss-Seidel Method: Matrix Form

Re-Writing the Equations

To write the Gauss-Seidel method in matrix form,
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Gauss-Seidel Method

The Gauss-Seidel Method: Matrix Form

Re-Writing the Equations

To write the Gauss-Seidel method in matrix form, multiply both sides of

i—1 n

k 1 k k—1
X = — *Z(aijxj( ) - > (ain,-( ) + by
J=1 J=i+1

by a; and collect all kth iterate terms,
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Gauss-Seidel Method

The Gauss-Seidel Method: Matrix Form

Re-Writing the Equations

To write the Gauss-Seidel method in matrix form, multiply both sides of

i—1 n

k 1 k k—1
X = — *Z(aijxj( ) - > (ain,-( ) + by
J=1 J=i+1

by a; and collect all kth iterate terms, to give

k k k k—1
anx\') + apx) + -+ aix = —a; xS

k—1
i i1 _"'_ainxr(7 )+bi

foreachi=1,2,...,n.
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Gauss-Seidel Method

The Gauss-Seidel Method: Matrix Form

Re-Writing the Equations (Cont'd)
Writing all n equations gives

k k—1 k—1 k—1
auz§ ) = —0121’( ) _ 01356;(; ) oae alnx( )
k k k—1 k—1
aglxg ) —+ aggmg ) = —a23$§ )= aan( )

am:cgk) T angxék) +-+ annmgc) =

+ b

+ by
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Gauss-Seidel Method

The Gauss-Seidel Method: Matrix Form

Re-Writing the Equations (Cont'd)
Writing all n equations gives

auzgk) = —alzl’(k_l) - 013$;(;k_1) — alnx’glk_
aglxgk) + aggxgk) = —aggxgk_l) — = agnx(k_
(k) (k) (k)

An1Ty +  Gn2®y + -+ Gupn =

1)+b1

1)+b2

With the definitions of D, L, and U given previously, we have the
Gauss-Seidel method represented by

(D — L)x%®) = uxk-1 4 p
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Gauss-Seidel Method

The Gauss-Seidel Method: Matrix Form

(D — L)x®) = yxk=1) 1 p |

Re-Writing the Equations (Cont'd)
Solving for x(¥) finally gives

x® = (D - L)7'ux**Y 4 (D-L)"'b, foreachk=1,2,...
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Gauss-Seidel Method

The Gauss-Seidel Method: Matrix Form

(D — L)x®) = yxk=1) 1 p |

Re-Writing the Equations (Cont'd)

Solving for x(¥) finally gives
xK) = (D-L)7'Ux*Y 4+ (D-L)"b, foreachk=1,2,...

Letting Ty = (D — L)"'U and ¢y = (D — L)~ b, gives the Gauss-Seidel
technique the form
xK) = Toxk=1) 4 ¢4
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Gauss-Seidel Method

The Gauss-Seidel Method: Matrix Form

(D — L)x®) = yxk=1) 1 p |

Re-Writing the Equations (Cont'd)
Solving for x(¥) finally gives

x® = (D - L)7'ux**Y 4 (D-L)"'b, foreachk=1,2,...

Letting Ty = (D — L)"'U and ¢y = (D — L)~ b, gives the Gauss-Seidel
technique the form

xK) = Toxk=1) 4 ¢4
For the lower-triangular matrix D — L to be nonsingular, it is necessary
and sufficient that a; # 0, foreach i =1,2,...,n.
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Gauss-Seidel Algorithm

Outline

e The Gauss-Seidel Algorithm
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Gauss-Seidel Algorithm

Gauss-Seidel Iterative Algorithm (1/2)

To solve Ax = b given an initial approximation x(9): J

Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods I R L Burden & J D Faires 14/38



Gauss-Seidel Algorithm

Gauss-Seidel Iterative Algorithm (1/2)

To solve Ax = b given an initial approximation x(9): J

INPUT the number of equations and unknowns n;
the entries a;;, 1 </, j < n of the matrix A;
the entries b;, 1 < i < nof b;
the entries XO;, 1 < i < n of XO = x(9);
tolerance TOL;
maximum number of iterations N.
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Gauss-Seidel Algorithm

Gauss-Seidel Iterative Algorithm (1/2)

To solve Ax = b given an initial approximation x(9): J

INPUT the number of equations and unknowns n;
the entries a;;, 1 </, j < n of the matrix A;
the entries b;, 1 < i < nof b;
the entries XO;, 1 < i < n of XO = x(9);
tolerance TOL;
maximum number of iterations N.

OUTPUT the approximate solution x4, ..., X, or a message
that the number of iterations was exceeded.
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm (2/2)

Step1 Setk =1
Step 2 While (k < N) do Steps 3-6:
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm (2/2)

Step1 Setk =1
Step 2 While (k < N) do Steps 3-6:

Step3 Fori=1,...,n
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm (2/2)

Step1 Setk =1
Step 2 While (k < N) do Steps 3-6:

Step3 Fori=1,...,n

1 i—1 n
setx; = — —Za,'ij— Z a,-jXO,-+b,-
i | i j=it1
Step 4 If ||[x — XO|| < TOL then OUTPUT (xq,...,Xn)
(The procedure was successful)
STOP
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm (2/2)

Step1 Setk =1
Step 2 While (k < N) do Steps 3-6:

Step3 Fori=1,...,n

i—1 n
set xj = l —Za,'ij— Z a,-jXO,-+b,-
ai | 5 j=i+1
Step 4 If ||x — XO|| < TOL then OUTPUT (X1, ..., Xn)
(The procedure was successful)
STOP
Step5 Setk =k +1
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm (2/2)

Step1 Setk =1
Step 2 While (k < N) do Steps 3-6:

Step3 Fori=1,...,n

i—1 n
set xj = l —Za,'ij— Z a,-jXO,-+b,-
ai | 5 j=i+1

Step 4 If ||x — XO|| < TOL then OUTPUT (X1, ..., Xn)

(The procedure was successful)
STOP
Step5 Setk =k +1
Step6 Fori=1,...,nset XO; = x;
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm (2/2)

Step1 Setk =1
Step 2 While (k < N) do Steps 3-6:

Step3 Fori=1,...,n

i—1 n
set xj = l —Za,'ij— Z a,-jXO,-+b,-
ai | 5 j=i+1

Step 4 If ||x — XO|| < TOL then OUTPUT (X1, ..., Xn)

(The procedure was successful)
STOP
Step5 Setk =k +1
Step6 Fori=1,...,nset XO; = x;

Step 7 OUTPUT (‘Maximum number of iterations exceeded’)
STOP (The procedure was unsuccessful)
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm

Comments on the Algorithm

@ Step 3 of the algorithm requires that a;; # 0, for each
i=1,2,...,n.

Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods I R L Burden & J D Faires 16/38



Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm

Comments on the Algorithm

@ Step 3 of the algorithm requires that a;; # 0, for each
i=1,2,...,n. If one of the aj; entries is 0 and the system is
nonsingular, a reordering of the equations can be performed so
that no a; = 0.

Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods I R L Burden & J D Faires 16/38



Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm

Comments on the Algorithm

@ Step 3 of the algorithm requires that a;; # 0, for each
i=1,2,...,n. If one of the aj; entries is 0 and the system is
nonsingular, a reordering of the equations can be performed so
that no a; = 0.

@ To speed convergence, the equations should be arranged so that
aji is as large as possible.
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@ Step 3 of the algorithm requires that a;; # 0, for each
i=1,2,...,n. If one of the aj; entries is 0 and the system is
nonsingular, a reordering of the equations can be performed so
that no a; = 0.

@ To speed convergence, the equations should be arranged so that
aji is as large as possible.

@ Another possible stopping criterion in Step 4 is to iterate until

x4 — x|
<]

is smaller than some prescribed tolerance.
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm

Comments on the Algorithm

@ Step 3 of the algorithm requires that a;; # 0, for each
i=1,2,...,n. If one of the aj; entries is 0 and the system is
nonsingular, a reordering of the equations can be performed so
that no a; = 0.

@ To speed convergence, the equations should be arranged so that
aji is as large as possible.

@ Another possible stopping criterion in Step 4 is to iterate until

x4 — x|
<]

is smaller than some prescribed tolerance.

@ For this purpose, any convenient norm can be used, the usual
being the /I, norm.
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e Convergence Results for General Iteration Methods
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Convergence Results

Convergence Results for General Iteration Methods

Introduction

@ To study the convergence of general iteration techniques, we need
to analyze the formula

x®) = Txk=V) y ¢, foreachk=1,2,...

where x(© is arbitrary.

@ The following lemma and the earlier on convergent
matrices provide the key for this study.
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Convergence Results

Convergence Results for General Iteration Methods

If the spectral radius satisfies p(T) < 1, then (/ — T)~" exists, and

(I-T) "' =1+T+T2+...=> T
j=0
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Convergence Results

Convergence Results for General Iteration Methods

If the spectral radius satisfies p(T) < 1, then (/ — T)~" exists, and

(I-T) "' =1+T+T2+...=> T
j=0

.

Proof (1/2)

@ Because Tx = \x is true precisely when (/ — T)x = (1 — \)x, we
have X as an eigenvalue of T precisely when 1 — X is an
eigenvalue of | — T.
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Convergence Results for General Iteration Methods

If the spectral radius satisfies p(T) < 1, then (/ — T)~" exists, and

(I-T) "' =1+T+T2+...=> T
j=0

Proof (1/2)
@ Because Tx = \x is true precisely when (/ — T)x = (1 — \)x, we
have X as an eigenvalue of T precisely when 1 — X is an
eigenvalue of | — T.

@ But [A\| < p(T) < 1,s0 X =1isnotan eigenvalue of T, and 0
cannot be an eigenvalue of / — T.
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Convergence Results

Convergence Results for General Iteration Methods

If the spectral radius satisfies p(T) < 1, then (/ — T)~" exists, and

(I-T) "' =1+T+T2+...=> T
j=0

Proof (1/2)

@ Because Tx = \x is true precisely when (/ — T)x = (1 — \)x, we
have X as an eigenvalue of T precisely when 1 — X is an
eigenvalue of | — T.

@ But [A\| < p(T) < 1,s0 X =1isnotan eigenvalue of T, and 0
cannot be an eigenvalue of / — T.

@ Hence, (I — T)~! exists.
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Convergence Results

Convergence Results for General Iteration Methods

Proof (2/2)
Let

Sm=I1+T+T2+...4+T"
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Convergence Results

Convergence Results for General Iteration Methods

Proof (2/2)
Let

Sm=1+T+ T24 ... TM
Then
(I_T)Sm:(1+T+T2+'--+Tm)—(T+T2+...+Tm+1): [ Tm+1
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Convergence Results

Convergence Results for General Iteration Methods

Proof (2/2)
Let

Sm=Il+T+T24+...4 T
Then

(I=T)Sm=(+T+T 4+ +TT) —(T+ T2+ -+ T™T) = |- T

and, since T is convergent, the on convergent matrices
implies that
lim (1= T)Sm = lim (/- T = |

m—oo
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Convergence Results

Convergence Results for General Iteration Methods

Proof (2/2)
Let

Sm=Il+T+T24+...4 T
Then

(I=T)Sm=(+T+T 4+ +TT) —(T+ T2+ -+ T™T) = |- T

and, since T is convergent, the on convergent matrices
implies that
lim (1= T)Sm = lim (/- T = |

m—oo

Thus, (/= T)™' = liMmooe Sm= 1+ T+ T2 4. = 32, T
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Convergence Results

Convergence Results for General Iteration Methods

For any x(©) € R”, the sequence {x(¥)}2  defined by

x®) = Txk=1) 4 ¢, for each k > 1
converges to the unique solution of

x=Tx+cC

if and only if p(T) < 1.
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Convergence Results

Convergence Results for General Iteration Methods

Proof (1/5)
First assume that p(T) < 1.
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Convergence Results

Convergence Results for General Iteration Methods

Proof (1/5)
First assume that p(T) < 1. Then,

xB = x4 ¢
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Convergence Results

Convergence Results for General Iteration Methods

Proof (1/5)
First assume that p(T) < 1. Then,

xB = x4 ¢
T(Tx*2 +¢)+¢c
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Convergence Results

Convergence Results for General Iteration Methods

Proof (1/5)
First assume that p(T) < 1. Then,

xB = x4 ¢
= T(Tx*k2 te)+ec
T2x*=2) 1 (T + Ie
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Convergence Results

Convergence Results for General Iteration Methods

Proof (1/5)
First assume that p(T) < 1. Then,

xB = x4 ¢
T(Tx*2 +¢)+¢c
= T2 1 (T+ e

= TMO (T "+ ...+ T+ e
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Convergence Results

Convergence Results for General Iteration Methods

Proof (1/5)
First assume that p(T) < 1. Then,

xB = x4 ¢
T(Tx*2 +¢)+¢c
= T%*=2) (T + e

= TMO (T "+ ...+ T+ e

Because p(T) < 1, the on convergent matrices implies that T
is convergent, and
lim T%x©) =0

k—o0
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Convergence Results

Convergence Results for General Iteration Methods

Proof (2/5)
The previous lemma implies that

i ) — K+ (0) )
lim x kILmooTx -l—(ZT)C

k—oo i—0
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Convergence Results

Convergence Results for General Iteration Methods

Proof (2/5)
The previous lemma implies that

i ) — K+ (0) )
lim x kILmooTx -l—(ZT)C

k—oo i—0

= 0+(/-T)'c

= (I-T)"c
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Convergence Results

Convergence Results for General Iteration Methods

Proof (2/5)
The previous lemma implies that

i ) — K+ (0) )
kILmoox kILmoo Tkx(© 1 (Z T) c

J=0

= 0+(/-T)'c

= (I-T)"c

Hence, the sequence {x(%)} converges to the vector x = (/ — T)~'c
andx = Tx +c.
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@ To prove the converse, we will show that for any z € R”, we have
limg_o Tz = 0.
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@ To prove the converse, we will show that for any z € R”, we have
limg_o Tz = 0.
@ Again, by the theorem on convergent matrices, this is equivalent
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@ Let z be an arbitrary vector, and x be the unique solution to
Xx=TXx+c.
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limg_o Tz = 0.

@ Again, by the theorem on convergent matrices, this is equivalent
to p(T) < 1.

@ Let z be an arbitrary vector, and x be the unique solution to
X=TX+c.

@ Define x(©) = x — z, and, for k > 1, x(0) = Tx(k-1) ¢,
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Convergence Results

Convergence Results for General Iteration Methods

Proof (3/5)

@ To prove the converse, we will show that for any z € R”, we have
limg_o Tz = 0.

@ Again, by the theorem on convergent matrices, this is equivalent
to p(T) < 1.

@ Let z be an arbitrary vector, and x be the unique solution to
X=TX+c.

@ Define x(©) = x — z, and, for k > 1, x(0) = Tx(k-1) ¢,
@ Then {x()} converges to x.
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Convergence Results

Convergence Results for General Iteration Methods

Proof (4/5)
Also,

x—x®) = (Tx+¢c)— (Tx(k*” +c> =T (x—x(k*”)
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Convergence Results

Convergence Results for General Iteration Methods

Proof (5/5)
@ Hence

lim T"z = lim Tk (x_x(0)>

k—o00 Kk—o0

Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods I R L Burden & J D Faires 26/38



Convergence Results

Convergence Results for General Iteration Methods
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@ Hence
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k—oo k—oo
— i _ x(0
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Proof (5/5)
@ Hence
lim T"z = lim T* (x—x(o))
k—oo k—oo
— i _ x(0
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Convergence Results

Convergence Results for General Iteration Methods

Proof (5/5)
@ Hence
lim T"z = lim T* (x—x(o))
k—oo k—oo
— i ()
- Jim (< x)
=0

@ But z € R” was arbitrary, so by the theorem on convergent
matrices, T is convergent and p(T) < 1.
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Convergence Results

Convergence Results for General Iteration Methods

Corollary

|IT|| < 1 for any natural matrix norm and ¢ is a given vector, then the
sequence {x(K)}>  defined by

x¥) = Tx*=1 4 ¢

converges, for any x(©) € R”, to a vector x € R”, with x = Tx + ¢, and
the following error bounds hold:
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Convergence Results for General Iteration Methods

Corollary

|IT|| < 1 for any natural matrix norm and ¢ is a given vector, then the
sequence {x(K)}>  defined by

x(®) = Tx(k=1) 4 ¢

converges, for any x(©) € R”, to a vector x € R”, with x = Tx + ¢, and
the following error bounds hold:

(i) [ = x| < (I T]*)x® — x|
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converges, for any x(©) € R”, to a vector x € R”, with x = Tx + ¢, and
the following error bounds hold:

(i) [ = x| < (I T]*)x® — x|
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(i) [|x — x| < L [xM — xO
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Convergence Results

Convergence Results for General Iteration Methods

Corollary

|IT|| < 1 for any natural matrix norm and ¢ is a given vector, then the
sequence {x(K)}>  defined by

x(®) = Tx(k=1) 4 ¢

converges, for any x(©) € R”, to a vector x € R”, with x = Tx + ¢, and
the following error bounds hold:
(i) fx —x®| < || T)*)xO@ — x|

oo Tk
(i) [|x — x| < L [xM — xO

The proof of the following corollary is similar to that for the to
the Fixed-Point Theorem for a single nonlinear equation.
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Interpretation

Outline

e Application to the Jacobi & Gauss-Seidel Methods
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

Using the Matrix Formulations

We have seen that the Jacobi and Gauss-Seidel iterative techniques
can be written

k)

x( Tixk=" 1 ¢; and

k)

x! Toxk=1 1 ¢4
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can be written

k)

x( Tixk=" 1 ¢; and

K T 4 ¢,

x(
using the matrices
Ti=D"'"(L+U) and Ty=(D-L)"'U

respectively.
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

Using the Matrix Formulations

We have seen that the Jacobi and Gauss-Seidel iterative techniques
can be written

x(0) Tx*=" ¢, and

x(<) Toxk=1 1 ¢4
using the matrices
Ti=D"'"(L+U) and Ty=(D-L)"'U

respectively. If p(T;) or p(Ty) is less than 1, then the corresponding
sequence {x()}2°  will converge to the solution x of Ax = b.

Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods I R L Burden & J D Faires 29/38



Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

For example, the Jacobi method has

x®) = p='(L+ U)x*=1) + Db,
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

For example, the Jacobi method has

x®) = p='(L+ U)x*=1) + Db,

and, if {x(9)}2 = converges to x,
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For example, the Jacobi method has

x®) = p='(L+ U)x*=1) + Db,
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x=D'L+U)x+D'b
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For example, the Jacobi method has

x®) = p='(L+ U)x*=1) + Db,
and, if {x(9)}2 ~ converges to x, then
x=D'L+U)x+D'b
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Dx=(L+U)x+b and (D-L-U)x=Db
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

For example, the Jacobi method has

x®) = p='(L+ U)x*=1) + Db,
and, if {x(9)}2 ~ converges to x, then
x=D'L+U)x+D'b
This implies that
Dx=(L+U)x+b and (D-L-U)x=Db

Since D — L — U = A, the solution x satisfies Ax = b.

Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods I R L Burden & J D Faires 30/38



Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

The following are easily verified sufficiency conditions for convergence
of the Jacobi and Gauss-Seidel methods. J
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

The following are easily verified sufficiency conditions for convergence
of the Jacobi and Gauss-Seidel methods. J

If Ais strictly diagonally dominant, then for any choice of x(9), both the
Jacobi and Gauss-Seidel methods give sequences {x(")};oz0 that
converge to the unique solution of Ax = b.
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

Is Gauss-Seidel better than Jacobi?
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

Is Gauss-Seidel better than Jacobi?

@ No general results exist to tell which of the two techniques, Jacobi
or Gauss-Seidel, will be most successful for an arbitrary linear
system.
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

Is Gauss-Seidel better than Jacobi?

@ No general results exist to tell which of the two techniques, Jacobi
or Gauss-Seidel, will be most successful for an arbitrary linear
system.

@ In special cases, however, the answer is known, as is
demonstrated in the following theorem.
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

(Stein-Rosenberg) Theorem

If a; <0, for each i # jand a; > 0, foreach i =1,2,...,n, then one
and only one of the following statements holds:

(i) 0<p(Tg) <p(Tj) <1
(i) 1 <p(T) <p(Tg)
(i) p(Tj) = p(Tg) =0
(iv) p(Tj) =p(Tg) =1
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

(Stein-Rosenberg) Theorem

If a; <0, for each i # jand a; > 0, foreach i =1,2,...,n, then one
and only one of the following statements holds:

(i) 0<p(Tg) <p(Tj) <1
(i) 1 <p(T) <p(Tg)
(i) p(T;) = p(Tg) =0
(iv) p(Tj) =p(Tg) =1 J

For the proof of this result, see pp. 120-127. of

Young, D. M., Iterative solution of large linear systems, Academic
Press, New York, 1971, 570 pp. J

Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods I R L Burden & J D Faires 33/38



Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

Two Comments on the Thoerem

@ For the special case described in the theorem, we see from part
(i), namely

0 <p(Tg) <p(T)) <1
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@ For the special case described in the theorem, we see from part
(i), namely

0 <p(Tg) <p(T)) <1

that when one method gives convergence, then both give
convergence, and the Gauss-Seidel method converges faster than
the Jacobi method.
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

Two Comments on the Thoerem

@ For the special case described in the theorem, we see from part
(i), namely

0 < p(Tg) < p(Tj) <1

that when one method gives convergence, then both give
convergence, and the Gauss-Seidel method converges faster than
the Jacobi method.
@ Part (ii), namely
1< p(T)) < p(Tg)

indicates that when one method diverges then both diverge, and
the divergence is more pronounced for the Gauss-Seidel method.
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Questions?



Eigenvalues & Eigenvectors: Convergent Matrices

The following statements are equivalent.
(i) Ais a convergent matrix.
) limp— ||A”|| = 0, for some natural norm.
) limp— ||A”|| = 0, for all natural norms.
(iv) p(A) < 1.
) lim,_ A’X = 0, for every x.

The proof of this theorem can be found on p. 14 of Issacson, E. and H.
B. Keller, Analysis of Numerical Methods, John Wiley & Sons, New
York, 1966, 541 pp.




Fixed-Point Theorem
Let g € CJa, b] be such that g(x) € [a, b], for all x in [a, b]. Suppose, in
addition, that g’ exists on (a, b) and that a constant 0 < k < 1 exists
with

' (x)| < k, forall x € (a,b).

Then for any number pg in [a, b], the sequence defined by

Pn = g(Pn-1), n>1

converges to the unique fixed point p in [a, b].




Functional (Fixed-Point) Iteration

Corrollary to the Fixed-Point Convergence Result
If g satisfies the hypothesis of the Fixed-Point then

kn
< Return to the Corollary to the Convergence Theorem for General Iterative Methods

lpn — p| < lP1 — pol
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