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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Matrix-Vector Multiplication
An n ×m matrix can be considered as a function that uses matrix
multiplication to take m-dimensional column vectors into
n-dimensional column vectors.

So an n ×m matrix is actually a linear function from IRm to IRn.
A square matrix A takes the set of n-dimensional vectors into
itself, which gives a linear function from IRn to IRn.
In this case, certain nonzero vectors x might be parallel to Ax,
which means that a constant λ exists with

Ax = λx
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Matrix-Vector Multiplication
An n ×m matrix can be considered as a function that uses matrix
multiplication to take m-dimensional column vectors into
n-dimensional column vectors.
So an n ×m matrix is actually a linear function from IRm to IRn.

A square matrix A takes the set of n-dimensional vectors into
itself, which gives a linear function from IRn to IRn.
In this case, certain nonzero vectors x might be parallel to Ax,
which means that a constant λ exists with

Ax = λx

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 4 / 33



Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Matrix-Vector Multiplication
An n ×m matrix can be considered as a function that uses matrix
multiplication to take m-dimensional column vectors into
n-dimensional column vectors.
So an n ×m matrix is actually a linear function from IRm to IRn.
A square matrix A takes the set of n-dimensional vectors into
itself, which gives a linear function from IRn to IRn.

In this case, certain nonzero vectors x might be parallel to Ax,
which means that a constant λ exists with

Ax = λx

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 4 / 33



Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Matrix-Vector Multiplication
An n ×m matrix can be considered as a function that uses matrix
multiplication to take m-dimensional column vectors into
n-dimensional column vectors.
So an n ×m matrix is actually a linear function from IRm to IRn.
A square matrix A takes the set of n-dimensional vectors into
itself, which gives a linear function from IRn to IRn.
In this case, certain nonzero vectors x might be parallel to Ax,
which means that a constant λ exists with

Ax = λx

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 4 / 33



Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Ax = λx

Matrix-Vector Multiplication (Cont’d)

For these vectors, we have

(A− λI)x = 0

There is a close connection between these numbers λ and the
likelihood that an iterative method will converge.
We will consider this connection in this section.
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors
Definition: Characteristic Polynomial
If A is a square matrix, the characteristic polynomial of A is defined by

p(λ) = det(A− λI)

Comments
It is not difficult to show that p is an nth-degree polynomial and,
consequently, has at most n distinct zeros, some of which might
be complex.
If λ is a zero of p, then, since det(A− λI) = 0, we can prove that
the linear system defined by

(A− λI)x = 0

has a solution with x 6= 0.
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Definition: Eigenvalues & Eigenvectors
If p is the characteristic polynomial of the matrix A, the zeros of p
are eigenvalues, or characteristic values, of the matrix A.

If λ is an eigenvalue of A and x 6= 0 satisfies

(A− λI)x = 0

then x is an eigenvector, or characteristic vector, of A
corresponding to the eigenvalue λ.
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Finding the Eigenvalues & Eigenvectors
To determine the eigenvalues of a matrix, we can use the fact that
λ is an eigenvalue of A if and only if

det(A− λI) = 0

Once an eigenvalue λ has been found, a corresponding
eigenvector x 6= 0 is determined by solving the system

(A− λI)x = 0
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Example

Show that there are no nonzero vectors x in IR2 with Ax parallel to x if

A =

[
0 1

−1 0

]

Solution (1/2)
The eigenvalues of A are the solutions to the characteristic polynomial

0 = det(A− λI) = det
[
−λ 1
−1 −λ

]
= λ2 + 1

so the eigenvalues of A are the complex numbers λ1 = i and λ2 = −i .
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors

Solution (2/2)
A corresponding eigenvector x for λ1

needs to satisfy[
0
0

]
=

[
−i 1
−1 −i

] [
x1
x2

]
=

[
−ix1 + x2
−x1 − ix2

]
that is, 0 = −ix1 + x2, so x2 = ix1, and 0 = −x1 − ix2.
Hence if x is an eigenvector of A, then exactly one of its
components is real and the other is complex.

As a consequence, there are no nonzero vectors x in IR2 with Ax
parallel to x.
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors
Geometric Interpretation of λ

If λ is real and λ > 1, then A has the effect of stretching x by a
factor of λ (see (a)).
If 0 < λ < 1, then A shrinks x by a factor of λ (see (b)).
If λ < 0, the effects are similar (see (c) and (d)), although the
direction of Ax is reversed.

Ax 

x

Ax 5 lx

(a)  l . 1 (b)  1 . l . 0 (c)  l , 21 (d)  21 , l , 0

x

x
x

Ax 

Ax 

Ax 

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 12 / 33



Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Example
Determine the eigenvalues and eigenvectors for the matrix

A =

 2 0 0
1 1 2
1 −1 4



Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 13 / 33



Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (1/4)
The characteristic polynomial of A is

p(λ) = det(A− λI)

= det

 2− λ 0 0
1 1− λ 2
1 −1 4− λ


= −(λ3 − 7λ2 + 16λ− 12)

= −(λ− 3)(λ− 2)2

so there are two eigenvalues of A: λ1 = 3 and λ2 = 2.
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (2/4)
An eigenvector x1 corresponding to the eigenvalue λ1 = 3 is a solution
to the vector-matrix equation (A− 3 · I)x1 = 0,

so 0
0
0

 =

 −1 0 0
1 −2 2
1 −1 1

 ·
 x1

x2
x3


which implies that x1 = 0 and x2 = x3.

Any nonzero value of x3 produces an eigenvector for the eigenvalue
λ1 = 3. For example, when x3 = 1 we have the eigenvector
x1 = (0, 1, 1)t , and any eigenvector of A corresponding to λ = 3 is a
nonzero multiple of x1.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 15 / 33
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (3/4)
An eigenvector x 6= 0 of A associated with λ2 = 2 is a solution of the
system (A− 2 · I)x = 0,

so 0
0
0

 =

 0 0 0
1 −1 2
1 −1 2

 ·
 x1

x2
x3


In this case the eigenvector has only to satisfy the equation

x1 − x2 + 2x3 = 0

which can be done in various ways.
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (4/4)
For example, when x1 = 0 we have x2 = 2x3, so one choice would
be x2 = (0, 2, 1)t .

We could also choose x2 = 0, which requires that x1 = −2x3.
Hence x3 = (−2, 0, 1)t gives a second eigenvector for the
eigenvalue λ2 = 2 that is not a multiple of x2.
The eigenvectors of A corresponding to the eigenvalue λ2 = 2
generate an entire plane. This plane is described by all vectors of
the form

αx2 + βx3 = (−2β, 2α, α + β)t

for arbitrary constants α and β, provided that at least one of the
constants is nonzero.
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (4/4)
For example, when x1 = 0 we have x2 = 2x3, so one choice would
be x2 = (0, 2, 1)t .
We could also choose x2 = 0, which requires that x1 = −2x3.

Hence x3 = (−2, 0, 1)t gives a second eigenvector for the
eigenvalue λ2 = 2 that is not a multiple of x2.
The eigenvectors of A corresponding to the eigenvalue λ2 = 2
generate an entire plane. This plane is described by all vectors of
the form

αx2 + βx3 = (−2β, 2α, α + β)t

for arbitrary constants α and β, provided that at least one of the
constants is nonzero.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 17 / 33



Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (4/4)
For example, when x1 = 0 we have x2 = 2x3, so one choice would
be x2 = (0, 2, 1)t .
We could also choose x2 = 0, which requires that x1 = −2x3.
Hence x3 = (−2, 0, 1)t gives a second eigenvector for the
eigenvalue λ2 = 2 that is not a multiple of x2.

The eigenvectors of A corresponding to the eigenvalue λ2 = 2
generate an entire plane. This plane is described by all vectors of
the form

αx2 + βx3 = (−2β, 2α, α + β)t

for arbitrary constants α and β, provided that at least one of the
constants is nonzero.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 17 / 33



Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Finding the Eigenvalues & Eigenvectors of A

Solution (4/4)
For example, when x1 = 0 we have x2 = 2x3, so one choice would
be x2 = (0, 2, 1)t .
We could also choose x2 = 0, which requires that x1 = −2x3.
Hence x3 = (−2, 0, 1)t gives a second eigenvector for the
eigenvalue λ2 = 2 that is not a multiple of x2.
The eigenvectors of A corresponding to the eigenvalue λ2 = 2
generate an entire plane. This plane is described by all vectors of
the form

αx2 + βx3 = (−2β, 2α, α + β)t

for arbitrary constants α and β, provided that at least one of the
constants is nonzero.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 17 / 33



Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Outline

1 Introduction

2 The Characteristic Polynomial of a Matrix

3 The Spectral Radius of a Matrix

4 Convergent Matrices

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 18 / 33



Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

Definition: Spectral Radius
The spectral radius ρ(A) of a matrix A is defined by

ρ(A) = max |λ|, where λ is an eigenvalue of A

(For complex λ = α + βi , we define |λ| = (α2 + β2)1/2.)

For the matrix in the previous example, namely

A =

 2 0 0
1 1 2
1 −1 4


note that

ρ(A) = max{2, 3} = 3
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

The spectral radius is closely related to the norm of a matrix, as shown
in the following theorem.

Theorem
If A is an n × n matrix, then

(i) ‖A‖2 = [ρ(AtA)]1/2

(ii) ρ(A) ≤ ‖A‖
for any natural norm ‖ · ‖
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

‖A‖2 = [ρ(AtA)]1/2

Proof (1/2)

The proof of part (i) requires more information concerning
eigenvalues than we presently have available.
For the details involved in the proof, see p. 21 of Ortega, J. M.,
Numerical Analysis; a Second Course, Academic Press, New
York, 1972, 201 pp.

Note: It can be shown that this result implies that if A is symmetric,
then ‖A‖2 = ρ(A).
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

ρ(A) ≤ ‖A‖

Proof (2/2)
To prove part (ii), suppose λ is an eigenvalue of A with eigenvector x
and ‖x‖ = 1. Then Ax = λx and

|λ| = |λ| · ‖x‖ = ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖ = ‖A‖

Thus
ρ(A) = max |λ| ≤ ‖A‖
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

Example
Determine the l2 norm of

A =

 1 1 0
1 2 1

−1 1 2



Note: We will apply part (i) of the theorem, namely that

‖A‖2 = [ρ(AtA)]1/2
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

‖A‖2 = [ρ(AtA)]1/2

Solution (1/3)
We first need the eigenvalues of AtA, where

AtA =

 1 1 −1
1 2 1
0 1 2

 1 1 0
1 2 1

−1 1 2

 =

 3 2 −1
2 6 4

−1 4 5



Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 24 / 33



Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

‖A‖2 = [ρ(AtA)]1/2

Solution (2/3)
If

0 = det(AtA− λI)

= det

3− λ 2 −1
2 6− λ 4
−1 4 5− λ


= −λ3 + 14λ2 − 42λ

= −λ(λ2 − 14λ + 42)

then λ = 0 or λ = 7±
√

7.
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Spectral Radius

‖A‖2 = [ρ(AtA)]1/2

Solution (3/3)
By part (i) of the theorem, we have

||A||2 =
√

ρ(AtA)

=

√
max{0, 7−

√
7, 7 +

√
7}

=

√
7 +

√
7

≈ 3.106
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices
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1 Introduction

2 The Characteristic Polynomial of a Matrix

3 The Spectral Radius of a Matrix
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

In studying iterative matrix techniques, it is of particular importance to
know when powers of a matrix become small (that is, when all the
entries approach zero). Matrices of this type are called convergent.

Definition: Convergent Matrix
We call an n × n matrix A convergent if

lim
k→∞

(Ak )ij = 0, for each i = 1, 2, . . . , n and j = 1, 2, . . . , n
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

Example
Show that

A =

[
1
2 0
1
4

1
2

]
is a convergent matrix.
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

Solution
Computing powers of A, we obtain:

A2 =

[
1
4 0
1
4

1
4

]
A3 =

[
1
8 0
3
16

1
8

]
A4 =

[
1
16 0
1
8

1
16

]

and, in general,

Ak =

[
(1

2)k 0
k

2k+1 (1
2)k

]
So A is a convergent matrix because

lim
k→∞

(
1
2

)k

= 0 and lim
k→∞

k
2k+1 = 0
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

Notice that the convergent matrix A in the last example has
ρ(A) = 1

2 , because 1
2 is the only eigenvalue of A.

This illustrates an important connection that exists between the
spectral radius of a matrix and the convergence of the matrix,as
detailed in the following result.
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Introduction Characteristic Polynomial Spectral Radius Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

Theorem
The following statements are equivalent.

(i) A is a convergent matrix.
(ii) limn→∞ ‖An‖ = 0, for some natural norm.
(iii) limn→∞ ‖An‖ = 0, for all natural norms.
(iv) ρ(A) < 1.
(v) limn→∞ Anx = 0, for every x.

The proof of this theorem can be found on p. 14 of Issacson, E. and H.
B. Keller, Analysis of Numerical Methods, John Wiley & Sons, New
York, 1966, 541 pp.
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