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multiplication to take m-dimensional column vectors into
n-dimensional column vectors.
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Introduction

Eigenvalues & Eigenvectors

Matrix-Vector Multiplication

@ An n x m matrix can be considered as a function that uses matrix
multiplication to take m-dimensional column vectors into
n-dimensional column vectors.

@ So an n x m matrix is actually a linear function from R” to R".

@ A square matrix A takes the set of n-dimensional vectors into
itself, which gives a linear function from R” to R".

@ In this case, certain nonzero vectors x might be parallel to Ax,
which means that a constant A exists with

AX = \X
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Matrix-Vector Multiplication (Cont'd)
@ For these vectors, we have

(A—A)x=0
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Matrix-Vector Multiplication (Cont'd)
@ For these vectors, we have

(A—A)x=0

@ There is a close connection between these numbers A and the
likelihood that an iterative method will converge.
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Introduction

Eigenvalues & Eigenvectors

AX = \X J

Matrix-Vector Multiplication (Cont'd)
@ For these vectors, we have

(A—A)x=0

@ There is a close connection between these numbers A and the
likelihood that an iterative method will converge.

@ We will consider this connection in this section.
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Characteristic Polynomial

Eigenvalues & Eigenvectors

Definition: Characteristic Polynomial
If Ais a square matrix, the characteristic polynomial of A is defined by

p(A) = det(A — \I)
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Characteristic Polynomial

Eigenvalues & Eigenvectors

Definition: Characteristic Polynomial
If Ais a square matrix, the characteristic polynomial of A is defined by

p(A) = det(A — \I)

Comments

@ It is not difficult to show that p is an nth-degree polynomial and,
consequently, has at most n distinct zeros, some of which might
be complex.

v
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Characteristic Polynomial

Eigenvalues & Eigenvectors

Definition: Characteristic Polynomial
If Ais a square matrix, the characteristic polynomial of A is defined by

p(A) = det(A — \I)

v

Comments

@ It is not difficult to show that p is an nth-degree polynomial and,
consequently, has at most n distinct zeros, some of which might
be complex.

@ If X is a zero of p, then, since det(A — Al) = 0, we can prove that
the linear system defined by

(A—A)x =0

has a solution with x # 0.

v
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Characteristic Polynomial

Eigenvalues & Eigenvectors

Definition: Eigenvalues & Eigenvectors

@ If pis the characteristic polynomial of the matrix A, the zeros of p
are eigenvalues, or characteristic values, of the matrix A.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 8/33



Characteristic Polynomial

Eigenvalues & Eigenvectors

Definition: Eigenvalues & Eigenvectors

@ If pis the characteristic polynomial of the matrix A, the zeros of p
are eigenvalues, or characteristic values, of the matrix A.

@ If A is an eigenvalue of A and x # 0 satisfies
(A—XHx=0

then x is an eigenvector, or characteristic vector, of A
corresponding to the eigenvalue .
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Eigenvalues & Eigenvectors

Finding the Eigenvalues & Eigenvectors

@ To determine the eigenvalues of a matrix, we can use the fact that
A is an eigenvalue of A if and only if

det(A— A) =0
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Characteristic Polynomial

Eigenvalues & Eigenvectors

Finding the Eigenvalues & Eigenvectors

@ To determine the eigenvalues of a matrix, we can use the fact that
A is an eigenvalue of A if and only if

det(A— A) =0

@ Once an eigenvalue A has been found, a corresponding
eigenvector x £ 0 is determined by solving the system

(A—A)x=0
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Eigenvalues & Eigenvectors

Show that there are no nonzero vectors x in IR? with Ax parallel to X if

e[ 23]
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Characteristic Polynomial

Eigenvalues & Eigenvectors

Example
Show that there are no nonzero vectors x in IR? with Ax parallel to X if

e[ 23]

Solution (1/2)
The eigenvalues of A

A\
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Characteristic Polynomial

Eigenvalues & Eigenvectors

Example

Show that there are no nonzero vectors x in IR? with Ax parallel to X if

e[ 23]

Solution (1/2)
The eigenvalues of A are the solutions to the characteristic polynomial

- 1

O:det(A—)\l):det[ 1

]:)\2+1

A\
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Characteristic Polynomial

Eigenvalues & Eigenvectors

Example

Show that there are no nonzero vectors x in IR? with Ax parallel to X if

e[ 23]

Solution (1/2)
The eigenvalues of A are the solutions to the characteristic polynomial

- 1

O:det(A—)\l):det[ 1

]:)\2+1

so the eigenvalues of A are the complex numbers Ay = iand \o = —/.
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Characteristic Polynomial

Eigenvalues & Eigenvectors

Solution (2/2)
@ A corresponding eigenvector x for \4
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Eigenvalues & Eigenvectors

Solution (2/2)
@ A corresponding eigenvector x for Ay needs to satisfy

S =R B e
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Characteristic Polynomial

Eigenvalues & Eigenvectors

Solution (2/2)
@ A corresponding eigenvector x for Ay needs to satisfy

S =R B e

thatis, 0 = —ixy + Xo, SO Xo = ixy, and 0 = —x3 — iXo.
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Characteristic Polynomial

Eigenvalues & Eigenvectors

Solution (2/2)
@ A corresponding eigenvector x for Ay needs to satisfy

S =R B e

thatis, 0 = —ixy + Xo, SO Xo = ixy, and 0 = —x3 — iXo.
@ Hence if x is an eigenvector of A, then exactly one of its
components is real and the other is complex.
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Characteristic Polynomial

Eigenvalues & Eigenvectors

Solution (2/2)
@ A corresponding eigenvector x for Ay needs to satisfy

S =R B e

thatis, 0 = —ixy + Xo, SO Xo = ixy, and 0 = —x3 — iXo.
@ Hence if x is an eigenvector of A, then exactly one of its
components is real and the other is complex.

As a consequence, there are no nonzero vectors x in R? with Ax
parallel to x.
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Characteristic Polynomial

Eigenvalues & Eigenvectors

Geometric Interpretation of A

@ If Aisreal and A > 1, then A has the effect of stretching x by a
factor of A (see (a)).

@ If 0 < A < 1, then A shrinks x by a factor of A (see (b)).

@ If A < 0, the effects are similar (see (c) and (d)), although the
direction of Ax is reversed.

() A>1 (b) 1>1>0 () A< —1 d —1<\A<0

AX
X X
Ax X X
AXx
AX
AX = \X
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Characteristic Polynomial

Finding the Eigenvalues & Eigenvectors of A

Determine the eigenvalues and eigenvectors for the matrix

2 00
A=|1 1 2
1 -1 4
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Characteristic Polynomial

Finding the Eigenvalues & Eigenvectors of A

Solution (1/4)
The characteristic polynomial of A is

p(\) = det(A— )\l
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Characteristic Polynomial

Finding the Eigenvalues & Eigenvectors of A

Solution (1/4)
The characteristic polynomial of A is

2-)\ 0 0
p(\) = det(A— \l) =det 1 1-A 2
1 -1 4-)
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Characteristic Polynomial

Finding the Eigenvalues & Eigenvectors of A

Solution (1/4)
The characteristic polynomial of A is

2-)\ 0 0
p(\) = det(A— \l) =det 1 1-A 2
1 -1 4-)

= (A -7X 4161 -12)
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Characteristic Polynomial

Finding the Eigenvalues & Eigenvectors of A

Solution (1/4)
The characteristic polynomial of A is

2-)\ 0 0
p(\) = det(A— \l) =det 1 1-A 2
1 -1 4-)

= (A -7X 4161 -12)

= —(A-3)(A—27?
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Characteristic Polynomial

Finding the Eigenvalues & Eigenvectors of A

Solution (1/4)
The characteristic polynomial of A is

2-)\ 0 0
p(\) = det(A— \l) =det 1 1-A 2
1 -1 4-)

= —(A}-7)2116)-12)

= —(A-3)(A—27?

so there are two eigenvalues of A: Ay = 3 and X, = 2.
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Characteristic Polynomial

Finding the Eigenvalues & Eigenvectors of A

Solution (2/4)

An eigenvector x; corresponding to the eigenvalue Ay = 3 is a solution
to the vector-matrix equation (A—3 - /)xy =0,
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Characteristic Polynomial

Finding the Eigenvalues & Eigenvectors of A

Solution (2/4)

An eigenvector x; corresponding to the eigenvalue Ay = 3 is a solution
to the vector-matrix equation (A—3 - /)xy =0, so

0 1 00 Xi
0ol=| 1 22| |x
0 1 -1 1 X3

which implies that x; = 0 and x> = x3.
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Characteristic Polynomial

Finding the Eigenvalues & Eigenvectors of A

Solution (2/4)

An eigenvector x; corresponding to the eigenvalue Ay = 3 is a solution
to the vector-matrix equation (A—3 - /)xy =0, so

0 1 00 Xi
0ol=| 1 22| |x
0 1 -1 1 X3

which implies that x; = 0 and x> = x3.

Any nonzero value of x3 produces an eigenvector for the eigenvalue
A =3.

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 15/33



Characteristic Polynomial

Finding the Eigenvalues & Eigenvectors of A

Solution (2/4)

An eigenvector x4 corresponding to the eigenvalue A\ = 3 is a solution
to the vector-matrix equation (A—3 - /)xy =0, so

0 1 00 Xi
0ol=| 1 22| |x
0 1 -1 1 X3

which implies that x; = 0 and x> = x3.

Any nonzero value of x3 produces an eigenvector for the eigenvalue
Ay = 3. For example, when x3 = 1 we have the eigenvector

x4 = (0,1,1)%, and any eigenvector of A corresponding to A = 3 is a
nonzero multiple of x.
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Characteristic Polynomial

Finding the Eigenvalues & Eigenvectors of A

Solution (3/4)

An eigenvector x # 0 of A associated with A, = 2 is a solution of the
system (A—2-)x =0,

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 16/33



Characteristic Polynomial

Finding the Eigenvalues & Eigenvectors of A

Solution (3/4)

An eigenvector x # 0 of A associated with A, = 2 is a solution of the
system (A—2-/)x =0, so

0 0 00 X1
ol=|1 12| |x
0 1 -1 2 X3
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Characteristic Polynomial

Finding the Eigenvalues & Eigenvectors of A

Solution (3/4)

An eigenvector x # 0 of A associated with A, = 2 is a solution of the
system (A—2-/)x =0, so

0 0 00 Xi
ol=1[1-12] |x
0 1 -1 2 X3

In this case the eigenvector has only to satisfy the equation

Xy —Xo+2x3 =0

which can be done in various ways.
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Characteristic Polynomial

Finding the Eigenvalues & Eigenvectors of A

Solution (4/4)

@ For example, when x; = 0 we have xo = 2x3, so one choice would
be xo = (0,2,1)%.
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Finding the Eigenvalues & Eigenvectors of A

Solution (4/4)

@ For example, when x; = 0 we have xo = 2x3, so one choice would
be xo = (0,2,1)%.
@ We could also choose xo = 0, which requires that x; = —2x3.
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Characteristic Polynomial

Finding the Eigenvalues & Eigenvectors of A

Solution (4/4)
@ For example, when x; = 0 we have xo = 2x3, so one choice would
be xo = (0,2,1)%.
@ We could also choose xo = 0, which requires that x; = —2x3.

@ Hence x3 = (—2,0, 1)! gives a second eigenvector for the
eigenvalue \» = 2 that is not a multiple of x».
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Characteristic Polynomial

Finding the Eigenvalues & Eigenvectors of A

Solution (4/4)
@ For example, when x; = 0 we have xo = 2x3, so one choice would
be xo = (0,2,1)%.
@ We could also choose xo = 0, which requires that x; = —2x3.

@ Hence x3 = (—2,0, 1)! gives a second eigenvector for the
eigenvalue \» = 2 that is not a multiple of x».

@ The eigenvectors of A corresponding to the eigenvalue Ao = 2
generate an entire plane. This plane is described by all vectors of
the form

aXz + BXs = (—28,2a,a + B)!

for arbitrary constants « and 3, provided that at least one of the
constants is nonzero.
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

Definition: Spectral Radius
The spectral radius p(A) of a matrix A is defined by

p(A) =max|A|, where \is an eigenvalue of A
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

Definition: Spectral Radius
The spectral radius p(A) of a matrix A is defined by

p(A) =max|A|, where \is an eigenvalue of A

(For complex A = o + 3i, we define |\ = (o? 4 3°)1/2))
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

Definition: Spectral Radius
The spectral radius p(A) of a matrix A is defined by

p(A) =max|A|, where \is an eigenvalue of A

(For complex A = o + 3i, we define |\ = (o? 4 3°)1/2))

For the matrix in the previous example, namely

2 00
A=|1 12
1 -1 4

p(A) =max{2,3} =3

note that
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

The spectral radius is closely related to the norm of a matrix, as shown
in the following theorem. J
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Eigenvalues & Eigenvectors: Spectral Radius

The spectral radius is closely related to the norm of a matrix, as shown
in the following theorem. J

If Ais an n x n matrix,
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Eigenvalues & Eigenvectors: Spectral Radius

The spectral radius is closely related to the norm of a matrix, as shown
in the following theorem. J

If Ais an n x n matrix, then
(i) [lAll2 = [p(AA)]'/2
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Eigenvalues & Eigenvectors: Spectral Radius

The spectral radius is closely related to the norm of a matrix, as shown
in the following theorem. J

If Ais an n x n matrix, then
(i) [lAll2 = [p(AA)]'/2
(i) p(A) < [IAl
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

The spectral radius is closely related to the norm of a matrix, as shown
in the following theorem. J

If Ais an n x n matrix, then
(i) ||All2 = [p(AlA)]'/2

(i) p(A) < [IAl

for any natural norm || - ||
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

|All2 = [o(A'A)] "/ ]

Proof (1/2)

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 21/33



Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

|All2 = [o(A'A)] "/ ]

Proof (1/2)

@ The proof of part (i) requires more information concerning
eigenvalues than we presently have available.
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

|All2 = [o(A'A)] "/ ]

Proof (1/2)
@ The proof of part (i) requires more information concerning
eigenvalues than we presently have available.
@ For the details involved in the proof, see p. 21 of Ortega, J. M.,

Numerical Analysis; a Second Course, Academic Press, New
York, 1972, 201 pp.
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

|All2 = [o(A'A)]'/2 )

Proof (1/2)
@ The proof of part (i) requires more information concerning
eigenvalues than we presently have available.
@ For the details involved in the proof, see p. 21 of Ortega, J. M.,

Numerical Analysis; a Second Course, Academic Press, New
York, 1972, 201 pp.

Note: It can be shown that this result implies that if A is symmetric,
then [|All2 = p(A).
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

p(A) < ||A] ]
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

p(A) < ||A] ]

Proof (2/2)

To prove part (ii), suppose A is an eigenvalue of A with eigenvector x
and ||x|| = 1.
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

p(A) < ||A] ]

Proof (2/2)

To prove part (ii), suppose A is an eigenvalue of A with eigenvector x
and ||x|| = 1. Then Ax = A\x and

A= ALl =[x = [lAx]] < [JA[[{jx]] = [IA]
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

p(A) < ||A] ]

Proof (2/2)

To prove part (ii), suppose A is an eigenvalue of A with eigenvector x
and ||x|| = 1. Then Ax = A\x and

A= ALl =[x = [lAx]] < [JA[[{jx]] = [IA]

Thus

p(A) = max || < [|A|
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

Determine the b norm of

—_ N —
N =+ O
 — |
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

Example
Determine the b norm of

110
A=| 1 2 1
11 2

Note: We will apply part (i) of the theorem, namely that

1|2 = [o(A'A)]'/2
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

|All2 = [o(A'A)] "/ ]

We first need the eigenvalues of A’A, where

11 1 110 3 2 —1
AA= |1 2 1 1t21]|=| 26 4
01 2][-1 12 -1 4 5
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

|All2 = [o(A'A)] "/ )

Solution (2/3)
If

0 = det(A'A — \))
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

|All2 = [o(A'A)] "/ )

Solution (2/3)
If

1 4 5-)

3-\ 2 —1
O=det(A'A—)) = det| 2 6-)X 4
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

|All2 = [o(A'A)] "/ )

Solution (2/3)
If

—1 4 5-2)
= X3 4+14)2 —42)

3-\ 2 —1
O=det(A'A—)) = det| 2 6-)X 4
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

1All2 = [o(A'A))"/2

Solution (2/3)

If

0 = det(A'A — \))

—1 4 5-2)
= X3 4+14)2 —42)

33—\ 2 —1
= det 2 6— )\ 4

= —A\2—14)+42)

Numerical Analysis (Chapter 7)

Eigenvalues & Eigenvectors R L Burden & J D Faires

25/33



Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

|All2 = [o(A'A)] "/ )

Solution (2/3)
If

—1 4 5-2)
= X3 4+14)2 —42)

3-\ 2 —1
O=det(A'A—)) = det| 2 6-)X 4

= —A\2—14)+42)

then\=0o0r\=7+ 7.
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

|All2 = [o(A'A)]'/2 J

Solution (3/3)
By part (i) of the theorem, we have

Al = +/p(ATA)
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

|All2 = [o(A'A)]'/2 J

Solution (3/3)
By part (i) of the theorem, we have

Al = +/p(ATA)

= \/max{o, 7-V7,7+VT}
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

|All2 = [o(A'A)]'/2 J

Solution (3/3)
By part (i) of the theorem, we have

Al = +/p(AtA)
= \/max{o, 7-V7,7+VT}
= V7+V7
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Spectral Radius

Eigenvalues & Eigenvectors: Spectral Radius

|All2 = [o(A'A)]'/2 J

Solution (3/3)
By part (i) of the theorem, we have

1Allz = /p(AlA)
= \/max{0,7—\ﬁ,7+\ﬁ}

= \7+V7
3.106
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Convergent Matrices

Outline

e Convergent Matrices
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Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

In studying iterative matrix techniques, it is of particular importance to
know when powers of a matrix become small (that is, when all the
entries approach zero). Matrices of this type are called convergent.
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Eigenvalues & Eigenvectors: Convergent Matrices

In studying iterative matrix techniques, it is of particular importance to
know when powers of a matrix become small (that is, when all the
entries approach zero). Matrices of this type are called convergent.

v

Definition: Convergent Matrix

We call an n x n matrix A convergent if

lim (A); =0, foreachi=1,2,...,nandj=1,2,...,n

k—o00
v

Numerical Analysis (Chapter 7) Eigenvalues & Eigenvectors R L Burden & J D Faires 28/33
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Eigenvalues & Eigenvectors: Convergent Matrices

Show that

A= =
nN= O
1

is a convergent matrix.
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Eigenvalues & Eigenvectors: Convergent Matrices

Computing powers of A, we obtain:

8
3 1
6 8

o
9
>

N
|

4
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|
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Eigenvalues & Eigenvectors: Convergent Matrices

Computing powers of A, we obtain:

1
= 0
8 4 _
3 1] A" =
6 8

() o
A= [ (b ]

@it 5=
3~ ©
|

and, in general,
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Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

Computing powers of A, we obtain:
8
i3

3 _
1] GRS 1
4 16 8

(HF o
Ak _ 2
[ e (D) ]

So A is a convergent matrix because

PN NN
o

o
9
>
N
|

@it 5=
3~ ©
|

and, in general,

—_

lim 1 k—O and lim L—O
k—oo \ 2 - k—o0 2k+1 o
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Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

@ Notice that the convergent matrix A in the last example has
p(A) = §, because } is the only eigenvalue of A.
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Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

@ Notice that the convergent matrix A in the last example has
p(A) = §, because } is the only eigenvalue of A.

@ This illustrates an important connection that exists between the
spectral radius of a matrix and the convergence of the matrix,as
detailed in the following result.
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Eigenvalues & Eigenvectors: Convergent Matrices

The following statements are equivalent.
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Eigenvalues & Eigenvectors: Convergent Matrices

The following statements are equivalent.
(i) Ais a convergent matrix.
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Eigenvalues & Eigenvectors: Convergent Matrices

The following statements are equivalent.
(i) Ais a convergent matrix.

(i) limp_ [|A"|| = O, for some natural norm.
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Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

The following statements are equivalent.
(i) Ais a convergent matrix.

(i) limp_ [|A"|| = O, for some natural norm.
(iii) limp_o ||A"]] = 0O, for all natural norms.
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Eigenvalues & Eigenvectors: Convergent Matrices

Theorem

The following statements are equivalent.
(i) Ais a convergent matrix.

(i) limp_ [|A"|| = O, for some natural norm.
(iii) limp_o ||A"]] = 0O, for all natural norms.
(iv) p(A) < 1.
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Eigenvalues & Eigenvectors: Convergent Matrices

Theorem
The following statements are equivalent.
(i) Ais a convergent matrix.

(i) limp_ [|A"|| = O, for some natural norm.
(iii) limp_o ||A"]] = 0O, for all natural norms.
(iv) p(A) < 1.

(v) limp_. A" =0, for every x.
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Convergent Matrices

Eigenvalues & Eigenvectors: Convergent Matrices

The following statements are equivalent.
(i) Ais a convergent matrix.

(i) limp_ [|A"|| = O, for some natural norm.
(i) limp_ ||A"|| = O, for all natural norms.
(iv) p(A) < 1.

(v) limp_. A" =0, for every x.

The proof of this theorem can be found on p. 14 of Issacson, E. and H.
B. Keller, Analysis of Numerical Methods, John Wiley & Sons, New
York, 1966, 541 pp.
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