
Chapter 6. Linear Least Squares Data Fitting

Section 1. Normal equation

Consider the m� n liner system of equations,

Ax = b

where

A =

2
66664
a11 a12 � � � a1n
a21 a22 � � � a2n
...

...
...

...
am1 am2 � � � amn

3
77775 ; x =

2
66664
x1
x2
...
xn

3
77775 ; b =

2
66664
b1
b2
...
bm

3
77775

When m > n the system is overdetermined, and in general has no solutions. Let

r = b� Ax

be the remainder. Since r 6= 0 in general, an alternative way is to �nd x such that r
is minimized in norm, i.e.,

krk2
2
= kb� Axk2

2

is minimized. This solution x is called a least square solution.

Theorem 6.1. (existence and uniqueness) The above linear least square problem
always has solutions. If null(A) = 0, then the solution is unique.

In the following, we assume that the least square solution is unique, i.e., we assume
that the column vectors of A are linearly independent.

Theorem 6.2. (normal equation) Let x be the least square solution, then the
remainder r satis�es

Atr = 0

or equivalently,
AtAx = Atb

This equation is called the normal equation, it is a n � n linear system. Since we
assumed that the columns of A are linearly independent, AtA is nonsingular and positive
de�nite. Therefore, any method for solving square linear systems can be applied to solve
this system. However, when the condition number of A is large, solving the normal
equation directly is not e�cient. Consider the special case, m = n, and consider the
condition number of AtA

cond(AtA) =
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=
q
�((AtA)t(AtA)) �

q
�(((AtA)�1)t((AtA)�1)



=
q
�((AtA)2) �

q
�((AtA)�1)2

= �(AtA) � �((AtA)�1)

= [cond(A)]2

where �(A) denotes the largest eigenvalue of A. Thus, the condition of AtA can be very
large if the condition of A is large.

Section 2. QR Factorization

In this section, we discuss the QR factorization method for solving the linear least
square problems.

Theorem 6.3. (QR factorization) Suppose the columns of the m � n matrix A are
linearly independent, then A has the QR factorization,

A = QR

where Qm�n has orthogonal columns, and Rn�n is an upper triangle matrix. If we restrict
the sign of the diagonal entries of R, the factorization is unique.

The matrices Q and R can be computed step by step as follows. Let

A = [a1; a2; � � � ; an];

Q = [q1;q2; � � � ;qn];

R =

2
66666664

r11 r12 r13 � � � r1n
r22 r23 � � � r2n

r33 � � � r3n
. . .

...
rnn

3
77777775

Let the diagonal entries of R be positive. Then from A = QR we have

a1 = r11q1;

a2 = r12q1 + r22q2;

a3 = r13q1 + r23q2 + r33q3;

� � � � � � � � � � � � � � � � � �

an = r1nq1 + r2nq2 + � � �+ rnnqn:

Thus, we have

r11 = ka1k2;q1 = a1=r11;

r12 = qt
1
a2; r22 = ka2 � r12q1k2;q2 = (a2 � r12q1)=r22;

� � � � � � � � � � � � � � � � � � � � �

rik = qt
i
ak; i = 1; 2; � � � ; k � 1; rkk =
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k�1X
i=1
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;qk =

 
ak �

k�1X
i=1

rikqi

!
=rkk
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This is the Gram-Schmidt orthogonal process. However, this algorithm may not be
stable due to round-o� errors. To make it stable, we can normalize the vector ai at each
step.

Once we have the QR factorization, the least square solution is

x = (AtA)Atb = (RtQtQR)�1RtQtb = R�1Qtb

Let
Qtb = c

Then,
Rx = c

This system can be solved easily, since R is an upper triangular matrix.

Section 3. Householder Transformation

To computer the QR factorization, we left multiply A by successive orthogonal ma-
trices to obtain an upper triangular matrix R

R = HnHn�1 � � �H1A

where Hi; i = 1; � � � ; n are m�m orthogonal matrices and has the form

Hi = I � 2uiu
t

i

with ut

i
ui = 1. Matrix of this form is called the Householder Transformation (or House-

holder Matrix). The Householder Transformation has the property that it can transform
any vector x to another vertor which is parallel to a given unit vector g and has the
same length with x, i.e., if H = I � 2uu is a Householder matrix, then

Hx = kxk
2
g

In this case,

u =
x� kxk

2
g

kx� kxk
2
gk

2

Let
A = [a1; a2; � � � ; an]

then
H1A = [H1a1; H1a2; � � � ; H1an]

We require
H1a1 = �1e1
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where
�1 = �sign(a11)

q
a211 + a221 + � � �+ a2n1

Then,

u1 =
a1 � �1e1

ka1 � �1e1k2

The �rst column of H1A are all zeros except the �rst entry. Similar idea is applied to the
submatrix by eliminating the �rst row and �rst column of H1A, denoted by ~A2. More
speci�cally, let

H2 =

"
1 0

0 ~H2

#

where ~H2 = Im�1 � 2u2u
t

2
. Then,

H2H1A =

"
1 0

0 ~H2

# "
�1 bt

1

0 ~A2

#
=

"
�1 bt

1

0 ~H2
~A2

#

Select u2 such that the �rst column of ~A2 are all zeros except the �rst entry. This
procedure is continued until the last column of A. Let

Q = HnHn�1 � � �H1

Then Q is an orthogonal matrix, and

QA = R =

"
R1

0

#

where R1 is an n� n upper triangular matrix. If we let

Qt =
h
Q1 Q2

i
where Q1 is an m� n matrix with columns orthogonal, then

A =
h
Q1 Q2

i " R1

0

#
= Q1R1

which is the QR factorization discussed in last section. Let

r = b� Ax

then,

Qr =

"
c
d

#
�

"
R1

0

#
x =

"
c�R1x

d

#

where "
c
d

#
= Qb
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Since Q is orthogonal, we have

krk2
2
= kQrk2

2
= kc�R1xk

2

2
+ kdk2

2

Obviously, when x is the solution of

R1x = c

r is minimized.
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