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Background
Gaussian elimination is the principal tool in the direct solution of
linear systems of equations.

We will now see that the steps used to solve a system of the form
Ax = b can be used to factor a matrix.

The factorization is particularly useful when it has the form
A = LU, where L is lower triangular and U is upper triangular.

Although not all matrices have this type of representation, many
do that occur frequently in the application of numerical techniques.
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Gaussian elimination applied to an arbitrary linear system Ax = b
requires O(n3/3) arithmetic operations to determine x.

However, to solve a linear system that involves an upper-triangular
system requires only backward substitution, which takes O(n2)
operations.

The number of operations required to solve a lower-triangular
systems is similar.
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where L is lower triangular and U is upper triangular. Then we can
solve for x more easily by using a two-step process:

First we let y = Ux and solve the lower triangular system Ly = b
for y. Since L is triangular, determining y from this equation
requires only O(n2) operations.

Once y is known, the upper triangular system Ux = y requires
only an additional O(n2) operations to determine the solution x.

Solving a linear system Ax = b in factored form means that the
number of operations needed to solve the system Ax = b is reduced
from O(n3/3) to O(2n2).
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ii , for each i = 1, 2, . . . , n.

The first step in the Gaussian elimination process consists of
performing, for each j = 2, 3, . . . , n, the operations

(Ej − mj ,1E1) → (Ej), where mj ,1 =
a(1)

j1

a(1)
11

Numerical Analysis (Chapter 6) Matrix Factorization R L Burden & J D Faires 8 / 46



Rationale Constructing LU Example Algorithm Permutation Matrices

Matrix Factorization

Constructing L & U
First, suppose that Gaussian elimination can be performed on the
system Ax = b without row interchanges.

With the notation used earlier, this is equivalent to having nonzero
pivot elements a(i)

ii , for each i = 1, 2, . . . , n.

The first step in the Gaussian elimination process consists of
performing, for each j = 2, 3, . . . , n, the operations

(Ej − mj ,1E1) → (Ej), where mj ,1 =
a(1)

j1

a(1)
11

These operations transform the system into one in which all the
entries in the first column below the diagonal are zero.
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This is called the first Gaussian transformation matrix.
Numerical Analysis (Chapter 6) Matrix Factorization R L Burden & J D Faires 9 / 46



Rationale Constructing LU Example Algorithm Permutation Matrices

Matrix Factorization

Constructing L & U (Cont’d)

We denote the product of this matrix with A(1) ≡ A by A(2) and
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Constructing L & U (Cont’d)

We denote the product of this matrix with A(1) ≡ A by A(2) and
with b by b(2), so

A(2)x = M(1)Ax = M(1)b = b(2)

In a similar manner we construct M(2), the identity matrix with the
entries below the diagonal in the second column replaced by the
negatives of the multipliers

mj ,2 =
a(2)

j2

a(2)
22

.
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The product of M(2) with A(2) has zeros below the diagonal in the
first two columns,
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Constructing L & U (Cont’d)

The product of M(2) with A(2) has zeros below the diagonal in the
first two columns, and we let

A(3)x = M(2)A(2)x = M(2)M(1)Ax = M(2)M(1)b = b(3)
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In general, with A(k)x = b(k) already formed,

Numerical Analysis (Chapter 6) Matrix Factorization R L Burden & J D Faires 12 / 46



Rationale Constructing LU Example Algorithm Permutation Matrices

Matrix Factorization

Constructing L & U (Cont’d)

In general, with A(k)x = b(k) already formed, multiply by the k th
Gaussian transformation matrix

M(k) =































1 0 · · · · · · · · · · · · · · · 0

0 1
. . .

...
...

. . . . . . . . .
...

... 0
. . . . . .

...
...

... −mk+1,k
. . . . . .

...
...

...
...

. . . . . . . . . 0
... · · · 0 −mn,k 0 · · · 0 1































Numerical Analysis (Chapter 6) Matrix Factorization R L Burden & J D Faires 12 / 46



Rationale Constructing LU Example Algorithm Permutation Matrices

Matrix Factorization

Constructing L & U (Cont’d)
to obtain

A(k+1)x = M(k)A(k)x

Numerical Analysis (Chapter 6) Matrix Factorization R L Burden & J D Faires 13 / 46



Rationale Constructing LU Example Algorithm Permutation Matrices

Matrix Factorization

Constructing L & U (Cont’d)
to obtain

A(k+1)x = M(k)A(k)x

= M(k) · · ·M(1)Ax

Numerical Analysis (Chapter 6) Matrix Factorization R L Burden & J D Faires 13 / 46



Rationale Constructing LU Example Algorithm Permutation Matrices

Matrix Factorization

Constructing L & U (Cont’d)
to obtain

A(k+1)x = M(k)A(k)x

= M(k) · · ·M(1)Ax

= M(k)b(k)

Numerical Analysis (Chapter 6) Matrix Factorization R L Burden & J D Faires 13 / 46



Rationale Constructing LU Example Algorithm Permutation Matrices

Matrix Factorization

Constructing L & U (Cont’d)
to obtain

A(k+1)x = M(k)A(k)x

= M(k) · · ·M(1)Ax

= M(k)b(k)

= b(k+1)

Numerical Analysis (Chapter 6) Matrix Factorization R L Burden & J D Faires 13 / 46



Rationale Constructing LU Example Algorithm Permutation Matrices

Matrix Factorization

Constructing L & U (Cont’d)
to obtain

A(k+1)x = M(k)A(k)x

= M(k) · · ·M(1)Ax

= M(k)b(k)

= b(k+1)

= M(k) · · ·M(1)b

Numerical Analysis (Chapter 6) Matrix Factorization R L Burden & J D Faires 13 / 46



Rationale Constructing LU Example Algorithm Permutation Matrices

Matrix Factorization

Constructing L & U (Cont’d)

The process ends with the formation of A(n)x = b(n), where A(n) is the
upper triangular matrix
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given by
A(n) = M(n−1)M(n−2) · · ·M(1)A
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A = LU.

To determine the complementary lower triangular matrix L, first
recall the multiplication of A(k)x = b(k) by the Gaussian
transformation of M(k) used to obtain:

A(k+1)x = M(k)A(k)x = M(k)b(k) = b(k+1),

where M(k) generates the row operations

(Ej − mj ,kEk ) → (Ej), for j = k + 1, . . . , n.
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To reverse the effects of this transformation and return to A(k) requires
that the operations (Ej + mj ,kEk) → (Ej) be performed for each

j = k + 1, . . . , n.
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that the operations (Ej + mj ,kEk) → (Ej) be performed for each
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The lower-triangular matrix L in the factorization of A, then, is the
product of the matrices L(k):

L = L(1)L(2) · · · L(n−1) =
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since the product of L with the upper-triangular matrix
U = M(n−1) · · ·M(2)M(1)A gives
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LU = L(1)L(2) · · · L(n−3)L(n−2)L(n−1)

· M(n−1)M(n−2)M(n−3) · · ·M(2)M(1) A
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Constructing L & U (Cont’d)

LU = L(1)L(2) · · · L(n−3)L(n−2)L(n−1)

· M(n−1)M(n−2)M(n−3) · · ·M(2)M(1) A

= [M(1)]−1[M(2)]−1 · · · [M(n−2)]−1[M(n−1)]−1

· M(n−1)M(n−2) · · ·M(2)M(1) A

= A

We now state a theorem which follows from these observations.

Numerical Analysis (Chapter 6) Matrix Factorization R L Burden & J D Faires 18 / 46



Rationale Constructing LU Example Algorithm Permutation Matrices

Matrix Factorization

Theorem
If Gaussian elimination can be performed on the linear system Ax = b
without row interchanges,
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If Gaussian elimination can be performed on the linear system Ax = b
without row interchanges, then the matrix A can be factored into the
product of a lower-triangular matrix L and an upper-triangular matrix U,
that is, A = LU, where mji = a(i)

ji /a(i)
ii ,

U =





















a(1)
11 a(1)

12 · · · · · · a(1)
1n

0 a(2)
22

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . a(n−1)

n−1,n

0 · · · · · · 0 a(n)
n,n





















L =



















1 0 · · · · · · 0

m21 1
. . .

...
...

. . .
. . .

. . .
...

...
...

. . .
. . . 0

mn1 · · · · · · mn,n−1 1


















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Outline

1 Computation Cost Rationale & Basic Solution Strategy

2 Constructing the Matrix Factorization

3 Example: LU Factorization of a 4 × 4 Matrix

4 The LU Factorization Algorithm

5 Permutation Matrices for Row Interchanges
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Matrix Factorization

Example
(a) Determine the LU factorization for matrix A in the linear system

Ax = b, where

A =









1 1 0 3
2 1 −1 1
3 −1 −1 2

−1 2 3 −1









and b =









1
1

−3
4








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Matrix Factorization

Example
(a) Determine the LU factorization for matrix A in the linear system

Ax = b, where

A =









1 1 0 3
2 1 −1 1
3 −1 −1 2

−1 2 3 −1









and b =









1
1

−3
4









(b) Then use the factorization to solve the system

x1 + x2 + 3x4 = 8

2x1 + x2 − x3 + x4 = 7

3x1 − x2 − x3 + 2x4 = 14

−x1 + 2x2 + 3x3 − x4 = −7
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Matrix Factorization: 4 × 4 Example

Part (a) Solution (1/2)
The original system was considered under Gaussian Elimination
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Matrix Factorization: 4 × 4 Example

Part (a) Solution (1/2)
The original system was considered under Gaussian Elimination
where we saw that the sequence of operations

(E2 − 2E1) → (E2) (E3 − 3E1) → (E3)
(E4 − (−1)E1) → (E4) (E3 − 4E2) → (E3)
(E4 − (−3)E2) → (E4)
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Matrix Factorization: 4 × 4 Example

Part (a) Solution (1/2)
The original system was considered under Gaussian Elimination
where we saw that the sequence of operations

(E2 − 2E1) → (E2) (E3 − 3E1) → (E3)
(E4 − (−1)E1) → (E4) (E3 − 4E2) → (E3)
(E4 − (−3)E2) → (E4)

converts the system to the triangular system

x1 + x2 + 3x4 = 4

− x2 − x3 − 5x4 = −7

3x3 + 13x4 = 13

− 13x4 = −13
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Matrix Factorization: 4 × 4 Example

Part (a) Solution (2/2)
The multipliers mij and the upper triangular matrix produce the
factorization

A =









1 1 0 3
2 1 −1 1
3 −1 −1 2

−1 2 3 −1








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Part (a) Solution (2/2)
The multipliers mij and the upper triangular matrix produce the
factorization

A =









1 1 0 3
2 1 −1 1
3 −1 −1 2

−1 2 3 −1









=









1 0 0 0
2 1 0 0
3 4 1 0

−1 −3 0 1

















1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13








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Matrix Factorization: 4 × 4 Example

Part (a) Solution (2/2)
The multipliers mij and the upper triangular matrix produce the
factorization

A =









1 1 0 3
2 1 −1 1
3 −1 −1 2

−1 2 3 −1









=









1 0 0 0
2 1 0 0
3 4 1 0

−1 −3 0 1

















1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13









= LU
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Matrix Factorization: 4 × 4 Example

Part (b) Solution (1/3)
To solve

Ax = LUx =









1 0 0 0
2 1 0 0
3 4 1 0

−1 −3 0 1

















1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13

















x1

x2

x3

x4









=









8
7

14
−7








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Matrix Factorization: 4 × 4 Example

Part (b) Solution (1/3)
To solve

Ax = LUx =









1 0 0 0
2 1 0 0
3 4 1 0

−1 −3 0 1

















1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13

















x1

x2

x3

x4









=









8
7

14
−7









we first introduce the substitution y = Ux.
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Matrix Factorization: 4 × 4 Example

Part (b) Solution (1/3)
To solve

Ax = LUx =









1 0 0 0
2 1 0 0
3 4 1 0

−1 −3 0 1

















1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13

















x1

x2

x3

x4









=









8
7

14
−7









we first introduce the substitution y = Ux. Then b = L(Ux) = Ly.
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Matrix Factorization: 4 × 4 Example

Part (b) Solution (2/3)
First, solve Ly = b (where y = Ux:

Ly =









1 0 0 0
2 1 0 0
3 4 1 0

−1 −3 0 1

















y1

y2

y3

y4









=









8
7

14
−7









.
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Matrix Factorization: 4 × 4 Example

Part (b) Solution (2/3)
First, solve Ly = b (where y = Ux:

Ly =









1 0 0 0
2 1 0 0
3 4 1 0

−1 −3 0 1

















y1

y2

y3

y4









=









8
7

14
−7









.

This system is solved for y by a simple forward-substitution process:

y1 = 8

2y1 + y2 = 7 ⇒ y2 = 7 − 2y1 = −9

3y1 + 4y2 + y3 = 14 ⇒ y3 = 14 − 3y1 − 4y2 = 26

−y1 − 3y2 + y4 = −7 ⇒ y4 = −7 + y1 + 3y2 = −26
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Matrix Factorization: 4 × 4 Example

Part (b) Solution (3/3)
We then solve Ux = y for x, the solution of the original system;
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Matrix Factorization: 4 × 4 Example

Part (b) Solution (3/3)
We then solve Ux = y for x, the solution of the original system; that is,









1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13

















x1

x2

x3

x4









=









8
−9
26

−26








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Matrix Factorization: 4 × 4 Example

Part (b) Solution (3/3)
We then solve Ux = y for x, the solution of the original system; that is,









1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13

















x1

x2

x3

x4









=









8
−9
26

−26









Using backward substitution we obtain x4 = 2, x3 = 0, x2 = −1, x1 = 3.
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Outline

1 Computation Cost Rationale & Basic Solution Strategy

2 Constructing the Matrix Factorization

3 Example: LU Factorization of a 4 × 4 Matrix

4 The LU Factorization Algorithm

5 Permutation Matrices for Row Interchanges
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Rationale Constructing LU Example Algorithm Permutation Matrices

LU Factorization Algorithm (1/3)

To factor the n × n matrix A = [aij ] into the product of the
lower-triangular matrix L = [lij ] and the upper-triangular matrix
U = [uij ]; that is, A = LU, where the main diagonal of either L or U
consists of all ones:
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Rationale Constructing LU Example Algorithm Permutation Matrices

LU Factorization Algorithm (1/3)

To factor the n × n matrix A = [aij ] into the product of the
lower-triangular matrix L = [lij ] and the upper-triangular matrix
U = [uij ]; that is, A = LU, where the main diagonal of either L or U
consists of all ones:

INPUT dimension n; the entries aij , 1 ≤ i , j ≤ n of A;
the diagonal l11 = · · · = lnn = 1 of L or
the diagonal u11 = · · · = unn = 1 of U.
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Rationale Constructing LU Example Algorithm Permutation Matrices

LU Factorization Algorithm (1/3)

To factor the n × n matrix A = [aij ] into the product of the
lower-triangular matrix L = [lij ] and the upper-triangular matrix
U = [uij ]; that is, A = LU, where the main diagonal of either L or U
consists of all ones:

INPUT dimension n; the entries aij , 1 ≤ i , j ≤ n of A;
the diagonal l11 = · · · = lnn = 1 of L or
the diagonal u11 = · · · = unn = 1 of U.

OUTPUT the entries lij , 1 ≤ j ≤ i , 1 ≤ i ≤ n of L and the entries,
uij , i ≤ j ≤ n, 1 ≤ i ≤ n of U.
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LU Factorization Algorithm (2/3)

Step 1 Select l11 and u11 satisfying l11u11 = a11

If l11u11 = 0 then OUTPUT (‘Factorization impossible’)
STOP

Step 2 For j = 2, . . . , n set u1j = a1j/l11 (First row of U)
lj1 = aj1/u11 (First column of L)
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LU Factorization Algorithm (2/3)

Step 1 Select l11 and u11 satisfying l11u11 = a11

If l11u11 = 0 then OUTPUT (‘Factorization impossible’)
STOP

Step 2 For j = 2, . . . , n set u1j = a1j/l11 (First row of U)
lj1 = aj1/u11 (First column of L)

Step 3 For i = 2, . . . , n − 1 do Steps 4 and 5:
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Rationale Constructing LU Example Algorithm Permutation Matrices

LU Factorization Algorithm (2/3)

Step 1 Select l11 and u11 satisfying l11u11 = a11

If l11u11 = 0 then OUTPUT (‘Factorization impossible’)
STOP

Step 2 For j = 2, . . . , n set u1j = a1j/l11 (First row of U)
lj1 = aj1/u11 (First column of L)

Step 3 For i = 2, . . . , n − 1 do Steps 4 and 5:

Step 4 Select lii and uii satisfying liiuii = aii −
∑i−1

k=1 likuki

If liiuii = 0 then OUTPUT (‘Factorization impossible’)
STOP
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LU Factorization Algorithm (2/3)

Step 1 Select l11 and u11 satisfying l11u11 = a11

If l11u11 = 0 then OUTPUT (‘Factorization impossible’)
STOP

Step 2 For j = 2, . . . , n set u1j = a1j/l11 (First row of U)
lj1 = aj1/u11 (First column of L)

Step 3 For i = 2, . . . , n − 1 do Steps 4 and 5:

Step 4 Select lii and uii satisfying liiuii = aii −
∑i−1

k=1 likuki

If liiuii = 0 then OUTPUT (‘Factorization impossible’)
STOP

Step 5 For j = i + 1, . . . , n

set uij = 1
lii

[

aij −
∑i−1

k=1 likukj

]

(i th row of U)

lji = 1
uii

[

aji −
∑i−1

k=1 ljkuki

]

(i th column of L)
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LU Factorization Algorithm (3/3)

Step 6 Select lnn and unn satisfying lnnunn = ann −
∑n−1

k=1 lnkukn

(Note: If lnnunn = 0, then A = LU but A is singular )
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Rationale Constructing LU Example Algorithm Permutation Matrices

LU Factorization Algorithm (3/3)

Step 6 Select lnn and unn satisfying lnnunn = ann −
∑n−1

k=1 lnkukn

(Note: If lnnunn = 0, then A = LU but A is singular )

Step 7 OUTPUT (lij for j = 1, . . . , i and i = 1, . . . , n)
OUTPUT (uij for j = i , . . . , n and i = 1, . . . , n)
STOP
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Rationale Constructing LU Example Algorithm Permutation Matrices

Matrix Factorization

Using the LU Factorization to solve Ax = b
Once the matrix factorization is complete,
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Matrix Factorization

Using the LU Factorization to solve Ax = b
Once the matrix factorization is complete, the solution to a linear
system of the form

Ax = LUx = b
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Matrix Factorization

Using the LU Factorization to solve Ax = b
Once the matrix factorization is complete, the solution to a linear
system of the form

Ax = LUx = b

is found by first letting
y = Ux
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Rationale Constructing LU Example Algorithm Permutation Matrices

Matrix Factorization

Using the LU Factorization to solve Ax = b
Once the matrix factorization is complete, the solution to a linear
system of the form

Ax = LUx = b

is found by first letting
y = Ux

and solving
Ly = b

for y.
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Matrix Factorization

Using the LU Factorization (Cont’d)

Since L is lower triangular, we have y1 =
b1

l11
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Matrix Factorization

Using the LU Factorization (Cont’d)

Since L is lower triangular, we have y1 =
b1

l11
and, for each

i = 2, 3, . . . , n,

yi =
1
lii



bi −

i−1
∑

j=1

lijyj




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Matrix Factorization

Using the LU Factorization (Cont’d)

Since L is lower triangular, we have y1 =
b1

l11
and, for each

i = 2, 3, . . . , n,

yi =
1
lii



bi −

i−1
∑

j=1

lijyj





After y is found by this forward-substitution process, the
upper-triangular system Ux = y is solved for x by backward
substitution using the equations

xn =
yn

unn
and xi =

1
uii



yi −

n
∑

j=i+1

uijxj




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Rationale Constructing LU Example Algorithm Permutation Matrices

Outline

1 Computation Cost Rationale & Basic Solution Strategy

2 Constructing the Matrix Factorization

3 Example: LU Factorization of a 4 × 4 Matrix

4 The LU Factorization Algorithm

5 Permutation Matrices for Row Interchanges
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Rationale Constructing LU Example Algorithm Permutation Matrices

Matrix Factorization: Permutation Matrices

Limitations of the LU Factorization Algorithm
We assumed that Ax = b can be solved using Gaussian
elimination without row interchanges.
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Matrix Factorization: Permutation Matrices

Limitations of the LU Factorization Algorithm
We assumed that Ax = b can be solved using Gaussian
elimination without row interchanges.

From a practical standpoint, this factorization is useful only when
row interchanges are not required to control round-off error.
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Rationale Constructing LU Example Algorithm Permutation Matrices

Matrix Factorization: Permutation Matrices

Limitations of the LU Factorization Algorithm
We assumed that Ax = b can be solved using Gaussian
elimination without row interchanges.

From a practical standpoint, this factorization is useful only when
row interchanges are not required to control round-off error.

We will now consider the modifications that must be made when
row interchanges are required.
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Matrix Factorization: Permutation Matrices

We begin with the introduction of a class of matrices that are used to
rearrange, or permute, rows of a given matrix.
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Matrix Factorization: Permutation Matrices

We begin with the introduction of a class of matrices that are used to
rearrange, or permute, rows of a given matrix.

Permutation Matrix
An n × n permutation matrix P = [pij ] is a matrix obtained by
rearranging the rows of In, the identity matrix. This gives a matrix with
precisely one nonzero entry in each row and in each column, and each
nonzero entry is a 1.
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Matrix Factorization: Permutation Matrices

Example
The matrix

P =





1 0 0
0 0 1
0 1 0





is a 3× 3 permutation matrix.
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Matrix Factorization: Permutation Matrices

Example
The matrix

P =





1 0 0
0 0 1
0 1 0





is a 3× 3 permutation matrix. For any 3× 3 matrix A, multiplying on the
left by P has the effect of interchanging the second and third rows of A:

PA =





1 0 0
0 0 1
0 1 0









a11 a12 a13

a21 a22 a23

a31 a32 a33




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Matrix Factorization: Permutation Matrices

Example
The matrix

P =





1 0 0
0 0 1
0 1 0





is a 3× 3 permutation matrix. For any 3× 3 matrix A, multiplying on the
left by P has the effect of interchanging the second and third rows of A:

PA =





1 0 0
0 0 1
0 1 0









a11 a12 a13

a21 a22 a23

a31 a32 a33



 =





a11 a12 a13

a31 a32 a33

a21 a22 a23




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Matrix Factorization: Permutation Matrices

Example
The matrix

P =





1 0 0
0 0 1
0 1 0





is a 3× 3 permutation matrix. For any 3× 3 matrix A, multiplying on the
left by P has the effect of interchanging the second and third rows of A:

PA =





1 0 0
0 0 1
0 1 0









a11 a12 a13

a21 a22 a23

a31 a32 a33



 =





a11 a12 a13

a31 a32 a33

a21 a22 a23





Similarly, multiplying A on the right by P interchanges the second and
third columns of A.
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Matrix Factorization: Permutation Matrices

Two useful properties of permutation matrices (1/2)
Suppose k1, . . . , kn is a permutation of the integers 1, . . . , n
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Matrix Factorization: Permutation Matrices

Two useful properties of permutation matrices (1/2)
Suppose k1, . . . , kn is a permutation of the integers 1, . . . , n and the
permutation matrix P = (pij) is defined by

pij =

{

1, if j = ki

0, otherwise
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Matrix Factorization: Permutation Matrices

Two useful properties of permutation matrices (2/2)
Then

PA permutes the rows of A; that is,

PA =











ak11 ak12 · · · ak1n

ak21 ak22 · · · ak2n
...

...
. . .

...
akn1 akn2 · · · aknn










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Matrix Factorization: Permutation Matrices

Two useful properties of permutation matrices (2/2)
Then

PA permutes the rows of A; that is,

PA =











ak11 ak12 · · · ak1n

ak21 ak22 · · · ak2n
...

...
. . .

...
akn1 akn2 · · · aknn











P−1 exists and P−1 = P t .
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Matrix Factorization: Permutation Matrices

Permutation Matrices & Gaussian Elimination
Earlier, we saw that for any nonsingular matrix A, the linear
system Ax = b can be solved by Gaussian elimination, with the
possibility of row interchanges.
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Matrix Factorization: Permutation Matrices

Permutation Matrices & Gaussian Elimination
Earlier, we saw that for any nonsingular matrix A, the linear
system Ax = b can be solved by Gaussian elimination, with the
possibility of row interchanges.

If we knew the row interchanges that were required to solve the
system by Gaussian elimination, we could arrange the original
equations in an order that would ensure that no row interchanges
are needed.
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Matrix Factorization: Permutation Matrices

Permutation Matrices & Gaussian Elimination
Earlier, we saw that for any nonsingular matrix A, the linear
system Ax = b can be solved by Gaussian elimination, with the
possibility of row interchanges.

If we knew the row interchanges that were required to solve the
system by Gaussian elimination, we could arrange the original
equations in an order that would ensure that no row interchanges
are needed.

Hence there is a rearrangement of the equations in the system
that permits Gaussian elimination to proceed without row
interchanges.
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Matrix Factorization: Permutation Matrices

Permutation Matrices & Gaussian Elimination (Cont’d)
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Matrix Factorization: Permutation Matrices

Permutation Matrices & Gaussian Elimination (Cont’d)
This implies that for any nonsingular matrix A, a permutation
matrix P exists for which the system

PAx = Pb

can be solved without row interchanges.
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Matrix Factorization: Permutation Matrices

Permutation Matrices & Gaussian Elimination (Cont’d)
This implies that for any nonsingular matrix A, a permutation
matrix P exists for which the system

PAx = Pb

can be solved without row interchanges. As a consequence, this
matrix PA can be factored into PA = LU, where L is lower
triangular and U is upper triangular.
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Matrix Factorization: Permutation Matrices

Permutation Matrices & Gaussian Elimination (Cont’d)
This implies that for any nonsingular matrix A, a permutation
matrix P exists for which the system

PAx = Pb

can be solved without row interchanges. As a consequence, this
matrix PA can be factored into PA = LU, where L is lower
triangular and U is upper triangular.

Because P−1 = P t , this produces the factorization

A = P−1LU = (P tL)U.
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Matrix Factorization: Permutation Matrices

Permutation Matrices & Gaussian Elimination (Cont’d)
This implies that for any nonsingular matrix A, a permutation
matrix P exists for which the system

PAx = Pb

can be solved without row interchanges. As a consequence, this
matrix PA can be factored into PA = LU, where L is lower
triangular and U is upper triangular.

Because P−1 = P t , this produces the factorization

A = P−1LU = (P tL)U.

The matrix U is still upper triangular, but P tL is not lower triangular
unless P = I.
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Matrix Factorization: Permutation Matrices

Example

Determine a factorization in the form A = (P tL)U for the matrix

A =









0 0 −1 1
1 1 −1 2

−1 −1 2 0
1 2 0 2








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Matrix Factorization: Permutation Matrices

Example

Determine a factorization in the form A = (P tL)U for the matrix

A =









0 0 −1 1
1 1 −1 2

−1 −1 2 0
1 2 0 2









Note
The matrix A cannot have an LU factorization because a11 = 0.
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Matrix Factorization: Permutation Matrices

Solution (1/4)
However, using the row interchange (E1) ↔ (E2),
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Matrix Factorization: Permutation Matrices

Solution (1/4)
However, using the row interchange (E1) ↔ (E2), followed by
(E3 + E1) → (E3)
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Matrix Factorization: Permutation Matrices

Solution (1/4)
However, using the row interchange (E1) ↔ (E2), followed by
(E3 + E1) → (E3) and (E4 − E1) → (E4), produces









1 1 −1 2
0 0 −1 1
0 0 1 2
0 1 1 0








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Matrix Factorization: Permutation Matrices

Solution (1/4)
However, using the row interchange (E1) ↔ (E2), followed by
(E3 + E1) → (E3) and (E4 − E1) → (E4), produces









1 1 −1 2
0 0 −1 1
0 0 1 2
0 1 1 0









Then, the row interchange (E2) ↔ (E4),
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Matrix Factorization: Permutation Matrices

Solution (1/4)
However, using the row interchange (E1) ↔ (E2), followed by
(E3 + E1) → (E3) and (E4 − E1) → (E4), produces









1 1 −1 2
0 0 −1 1
0 0 1 2
0 1 1 0









Then, the row interchange (E2) ↔ (E4), followed by (E4 + E3) → (E4),
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Matrix Factorization: Permutation Matrices

Solution (1/4)
However, using the row interchange (E1) ↔ (E2), followed by
(E3 + E1) → (E3) and (E4 − E1) → (E4), produces









1 1 −1 2
0 0 −1 1
0 0 1 2
0 1 1 0









Then, the row interchange (E2) ↔ (E4), followed by (E4 + E3) → (E4),
gives the matrix

U =









1 1 −1 2
0 1 1 0
0 0 1 2
0 0 0 3








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Matrix Factorization: Permutation Matrices

Solution (2/4)
The permutation matrix associated with the row interchanges
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Matrix Factorization: Permutation Matrices

Solution (2/4)
The permutation matrix associated with the row interchanges
(E1) ↔ (E2) and (E2) ↔ (E4)
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Matrix Factorization: Permutation Matrices

Solution (2/4)
The permutation matrix associated with the row interchanges
(E1) ↔ (E2) and (E2) ↔ (E4) is

P =









0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0








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Matrix Factorization: Permutation Matrices

Solution (2/4)
The permutation matrix associated with the row interchanges
(E1) ↔ (E2) and (E2) ↔ (E4) is

P =









0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0









and

PA =









1 1 −1 2
1 2 0 2

−1 −1 2 0
0 0 −1 1








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Matrix Factorization: Permutation Matrices

Solution (3/4)
Gaussian elimination is performed on PA using the same
operations as on A, except without the row interchanges.
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Matrix Factorization: Permutation Matrices

Solution (3/4)
Gaussian elimination is performed on PA using the same
operations as on A, except without the row interchanges.

That is, (E2 − E1) → (E2), (E3 + E1) → (E3), followed by
(E4 + E3) → (E4).
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Matrix Factorization: Permutation Matrices

Solution (3/4)
Gaussian elimination is performed on PA using the same
operations as on A, except without the row interchanges.

That is, (E2 − E1) → (E2), (E3 + E1) → (E3), followed by
(E4 + E3) → (E4).

The nonzero multipliers for PA are consequently,

m21 = 1, m31 = −1, and m43 = −1,

and the LU factorization of PA is

PA =









1 0 0 0
1 1 0 0

−1 0 1 0
0 0 −1 1

















1 1 −1 2
0 1 1 0
0 0 1 2
0 0 0 3









= LU
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Matrix Factorization: Permutation Matrices

Solution (4/4)

Multiplying by P−1 = P t produces the factorization

A = P−1(LU) = P t(LU) = (P tL)U
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Matrix Factorization: Permutation Matrices

Solution (4/4)

Multiplying by P−1 = P t produces the factorization

A = P−1(LU) = P t(LU) = (P tL)U

=









0 0 −1 1
1 0 0 0

−1 0 1 0
1 1 0 0

















1 1 −1 2
0 1 1 0
0 0 1 2
0 0 0 3








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