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Q Why Pivoting May be Necessary
e Gaussian Elimination with Partial Pivoting

e Gaussian Elimination with Scaled Partial (Scaled-Column) Pivoting
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When is Pivoting Required?

@ In deriving the Gaussin Elimination with Backward Subsitition
algorithm, we found that a row interchange was needed when one
of the pivot elements al((kk) is 0.
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@ In deriving the Gaussin Elimination with Backward Subsitition
algorithm, we found that a row interchange was needed when one

of the pivot elements al((kk) is 0.
@ This row interchange has the form (Ey) < (Ep), where p is the
smallest integer greater than k with agl‘() £ 0.
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Motivation

Pivoting Strategies: Motivation

When is Pivoting Required?

@ In deriving the Gaussin Elimination with Backward Subsitition
algorithm, we found that a row interchange was needed when one

of the pivot elements al((kk) is 0.
@ This row interchange has the form (Ey) < (Ep), where p is the
smallest integer greater than k with agl‘() £ 0.

@ To reduce round-off error, it is often necessary to perform row
interchanges even when the pivot elements are not zero.
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Pivoting Strategies: Motivation

When is Pivoting Required? (Cont'd)

o If al((kk) is small in magnitude compared to a/), then the magnitude

i
of the multiplier

k

will be much larger than 1.
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Motivation

Pivoting Strategies: Motivation

When is Pivoting Required? (Cont'd)
o If al((kk) is small in magnitude compared to aj(k), then the magnitude

of the multiplier

k

will be much larger than 1.

@ Round-off error introduced in the computation of one of the terms
alﬂ'f) is multiplied by mj, when computing aj(,k“), which compounds

the original error.

o
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Pivoting Strategies: Motivation

When is Pivoting Required? (Cont'd)

@ Also, when performing the backward substitution for

(k) n (k)
A 1 — Djk-+1 B

with a small value of a(kkk), any error in the numerator can be
dramatically increased because of the division by ai((i).
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Motivation

Pivoting Strategies: Motivation

When is Pivoting Required? (Cont'd)

@ Also, when performing the backward substitution for

. k .
with a small value of a(kk), any error in the numerator can be

dramatically increased because of the division by ai((i).

@ The following example will show that even for small systems,
round-off error can dominate the calculations.
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Pivoting Strategies: Motivation

Apply Gaussian elimination to the system

E,: 0.003000x; +59.14x, — 59.17
E> : 5.291x; — 6.130x, = 46.78

using four-digit arithmetic with rounding, and compare the results to
the exact solution x; = 10.00 and x, = 1.000.
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Pivoting Strategies: Motivating Example

Solution (1/4)

@ The first pivot element, a(lll) = 0.003000, is small, and its
associated multiplier,

5.291

Mot = — "~ — 1763.66
21 ™ 0.003000

rounds to the large number 1764.

Numerical Analysis (Chapter 6) Pivoting Strategies R L Burden & J D Faires 8/34



Motivation

Pivoting Strategies: Motivating Example

Solution (1/4)

@ The first pivot element, a(lll) = 0.003000, is small, and its
associated multiplier,

5.291

Mot = — "~ — 1763.66
21 ™ 0.003000

rounds to the large number 1764.

@ Performing (E2; — my1E;) — (E2) and the appropriate rounding
gives the system

0.003000x; + 59.14x, ~ 59.17
—104300x, ~ —104400
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Motivation

Pivoting Strategies: Motivating Example

Solution (2/4)
We obtained

0.003000x7 + 59.14x, ~ 59.17
—104300x; ~ —104400
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Motivation

Pivoting Strategies: Motivating Example

Solution (2/4)
We obtained

0.003000x; + 59.14x, ~ 59.17
—104300x, ~ —104400
instead of the exact system, which is

0.003000x; + 59.14x, = 59.17
—104309.376x, = —104309.376
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Motivation

Pivoting Strategies: Motivating Example

Solution (2/4)
We obtained

0.003000x7 + 59.14x, ~ 59.17
—104300x; ~ —104400

instead of the exact system, which is

0.003000x; + 59.14x, = 59.17
—104309.376x, = —104309.376

The disparity in the magnitudes of my;a;3 and ay3 has introduced
round-off error, but the round-off error has not yet been propagated.
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Motivation

Pivoting Strategies: Motivating Example

Solution (3/4)

Backward substitution yields

X2 =~ 1.001

which is a close approximation to the actual value, x, = 1.000.

o
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Pivoting Strategies: Motivating Example

Solution (3/4)

Backward substitution yields

X2 =~ 1.001

which is a close approximation to the actual value, x, = 1.000.
However, because of the small pivot a;; = 0.003000,

59.17 — (59.14)(1.001)
~ = —10.
X1 0.003000 0.00

contains the small error of 0.001 multiplied by

59.14

0.003000 ~ 20000

o
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Motivation

Pivoting Strategies: Motivating Example

Solution (3/4)

Backward substitution yields

X2 =~ 1.001

which is a close approximation to the actual value, x, = 1.000.
However, because of the small pivot a;; = 0.003000,

59.17 — (59.14)(1.001)
~ = —10.
X1 0.003000 0.00

contains the small error of 0.001 multiplied by

59.14

0.003000 ~ 20000

This ruins the approximation to the actual value x; = 10.00.

o
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Motivation

Pivoting Strategies: Motivating Example

Solution (4/4)

This is clearly a contrived example and the graph shows why the error
can so easily occur.

X, k
Approximation 2
(—10, 1.001) Exact solution
. (10, 1) E,
: 4 c
—10 10 X1

For larger systems it is much more difficult to predict in advance when
devastating round-off error might occur.

o
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e Gaussian Elimination with Partial Pivoting
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Gaussian Elimination with Partial Pivoting

Meeting a small pivot element
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

Meeting a small pivot element

@ The last example shows how difficulties can arise when the pivot
element al(:i) is small relative to the entries ai(jk), fork <i <nand
k<j<n.
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

Meeting a small pivot element

@ The last example shows how difficulties can arise when the pivot

element al(:i) is small relative to the entries ai(jk), fork <i <nand
k<j<n.
@ To avoid this problem, pivoting is performed by selecting an

element agfq) with a larger magnitude as the pivot, and

interchanging the kth and pth rows.
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

Meeting a small pivot element

@ The last example shows how difficulties can arise when the pivot
element al(:i) is small relative to the entries ai(jk), fork <i <nand
k <j<n.

@ To avoid this problem, pivoting is performed by selecting an
element agfq) with a larger magnitude as the pivot, and
interchanging the kth and pth rows.

@ This can be followed by the interchange of the kth and qth
columns, if necessary.
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

The Partial Pivoting Strategy
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

The Partial Pivoting Strategy

@ The simplest strategy is to select an element in the same column
that is below the diagonal and has the largest absolute value;
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

The Partial Pivoting Strategy

@ The simplest strategy is to select an element in the same column
that is below the diagonal and has the largest absolute value;

@ specifically, we determine the smallest p > k such that

‘ ‘ = max \alk
k<i<n

and perform (Ex) < (Ep).
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

The Partial Pivoting Strategy

@ The simplest strategy is to select an element in the same column
that is below the diagonal and has the largest absolute value;

@ specifically, we determine the smallest p > k such that

‘ ‘ = max \alk
k<i<n

and perform (Ex) < (Ep).
@ In this case no interchange of columns is used.
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

Apply Gaussian elimination to the system

E,: 0.003000x; +59.14x, = 59.17
E> : 5.291x; — 6.130x, = 46.78

using partial pivoting and 4-digit arithmetic with rounding, and compare

the results to the exact solution x; = 10.00 and x, = 1.000.

o
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

E;: 0.003000x; + 59.14x, = 59.17
E,: 5.291x; — 6.130x, — 46.78

Solution (1/3)

o
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

E;: 0.003000x; + 59.14x, = 59.17
E,: 5.291x; — 6.130x, — 46.78

Solution (1/3)

The partial-pivoting procedure first requires finding

max {|a(111)|, |ag11)|} — max {|0.003000|, |5.291|} = [5.291| = [a{})|

o
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

E;: 0.003000x; + 59.14x, = 59.17
E,: 5.291x; — 6.130x, — 46.78

Solution (1/3)

The partial-pivoting procedure first requires finding
max {|a(111)|, |ag11)|} — max {|0.003000|, |5.291|} = [5.291| = [a{})|

This requires that the operation (E,) < (E;) be performed to produce
the equivalent system

Ei: 5.291x; — 6.130x, = 46.78,
E,: 0.003000x; + 59.14x, — 59.17

o
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

E,: 5.291x; — 6.130x, = 46.78,
E,: 0.003000%; + 59.14x, = 59.17

Solution (2/3)

o
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

E,: 5.291x; — 6.130x, = 46.78,
E,: 0.003000%; + 59.14x, = 59.17

Solution (2/3)
The multiplier for this system is

2@
My = % — 0.0005670
aq

o
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

E,: 5.291x; — 6.130x, = 46.78,
E,: 0.003000%; + 59.14x, = 59.17

Solution (2/3)
The multiplier for this system is

(1)

a
My = % — 0.0005670
aq

and the operation (E; — my1E;) — (E2) reduces the system to

5.291x; — 6.130x, ~ 46.78
59.14x, ~ 59.14

o
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

5.291x; — 6.130x, ~ 46.78
59.14x, ~ 59.14

o

Solution (3/3)
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

5.291x; — 6.130x, ~ 46.78
59.14x, ~ 59.14

Solution (3/3)

The 4-digit answers resulting from the backward substitution are the
correct values

x; = 10.00 and X, = 1.000
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Partial Pivoting

Gaussian Elimination/Partial Pivoting Algorithm (1/4)

To solve the n x n linear system

E1: anXg+apXe + - +amXn = agnts
Ex: apiXg +agXy + - +aXn = A2 nt1

En: @niXy +an2X2 + -+ + @nnXn = annt1
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Partial Pivoting

Gaussian Elimination/Partial Pivoting Algorithm (1/4)

To solve the n x n linear system

E1: anXg+apXe + - +amXn = agnts
Ex: apiXg +agXy + - +aXn = A2 nt1

En: @niXy +an2X2 + -+ + @nnXn = annt1

INPUT number of unknowns and equations n; augmented
matrix A = [a;] where 1 <i <nand1<j<n+1.
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Partial Pivoting

Gaussian Elimination/Partial Pivoting Algorithm (1/4)

To solve the n x n linear system

E1: anXg+apXe + - +amXn = agnts
Ex: apiXg +agXy + - +aXn = A2 nt1

En: @niXy +an2X2 + -+ + @nnXn = annt1

INPUT number of unknowns and equations n; augmented
matrix A = [a;] where 1 <i <nand1<j<n+1.

OUTPUT solution X4, ..., X, or message that the linear
system has no unique solution.
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Partial Pivoting

Gaussian Elimination/Partial Pivoting Algorithm (2/4)

Stepl Fori=1,...,nset NROW(i) =i
Step2 Fori=1,...,n—1do Steps 3-6

Numerical Analysis (Chapter 6) Pivoting Strategies

(Initialize row pointer)
(Elimination process)

R L Burden & J D Faires

o

20/34



Partial Pivoting

Gaussian Elimination/Partial Pivoting Algorithm (2/4)

Stepl Fori=1,...,nset NROW(i) =i (Initialize row pointer)
Step2 Fori=1,...,n—1do Steps 3-6 (Elimination process)

Step 3 Let p be the smallest integer with i < p < n and
|a(NROW(p), )| = maxi<j<n [a(NROW(j), i)|
(Notation: a(NROW(i),j) = anrow, j)

o
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Partial Pivoting

Gaussian Elimination/Partial Pivoting Algorithm (2/4)

Stepl Fori=1,...,nset NROW(i) =i (Initialize row pointer)
Step2 Fori=1,...,n—1do Steps 3-6 (Elimination process)

Step 3 Let p be the smallest integer with i < p < n and
|a(NROW(p), )| = maxi<j<n [a(NROW(j), i)|
(Notation: a(NROW(i),j) = anrow, j)

Step 4 If a(NROW(p),i) = 0 then
OUTPUT(‘no unique solution exists’)
STOP

o
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Partial Pivoting

Gaussian Elimination/Partial Pivoting Algorithm (2/4)

Stepl Fori=1,...,nset NROW(i) =i (Initialize row pointer)
Step2 Fori=1,...,n—1do Steps 3-6 (Elimination process)

Step 3 Let p be the smallest integer with i < p < n and
|a(NROW(p), )| = maxi<j<n [a(NROW(j), i)|
(Notation: a(NROW(i),j) = anrow, j)

Step 4 If a(NROW(p),i) = 0 then
OUTPUT(‘no unique solution exists’)
STOP

Step 5 If NROW(i) # NROW(p) then set NCOPY = NROW(i)
NROW(i) = NROW(p)
NROW(p) = NCOPY
(Simulated row interchange)

o
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Partial Pivoting

Gaussian Elimination/Partial Pivoting Algorithm (3/4)

Step6 Forj=i+1,...,ndo Steps7 &8
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Partial Pivoting

Gaussian Elimination/Partial Pivoting Algorithm (3/4)

Step6 Forj=i+1,...,ndo Steps7 &8

Step 7 Set
M(NROW(j),i) = a(NROW(j),i)/a(NROW(i),i)
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Partial Pivoting

Gaussian Elimination/Partial Pivoting Algorithm (3/4)

Step6 Forj=i+1,...,ndo Steps7 &8

Step 7 Set
M(NROW(j),i) = a(NROW(j),i)/a(NROW(i),i)
Step 8 Perform
(Enrow () — M(NROW(j), 1) - Enrow(i)) — (Enrow(j))
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Partial Pivoting

Gaussian Elimination/Partial Pivoting Algorithm (3/4)

Step6 Forj=i+1,...,ndo Steps7 &8

Step 7 Set
M(NROW(j),i) = a(NROW(j),i)/a(NROW(i),i)
Step 8 Perform
(Enrow () — M(NROW(j), 1) - Enrow(i)) — (Enrow(j))

Step 9 If a(NROW(n),n) = 0 then
OUTPUT(‘no unigue solution exists’)
STOP
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Partial Pivoting

Gaussian Elimination/Partial Pivoting Algorithm (4/4)

Step 10 Set x, = a(NROW(n),n + 1)/a(NROW(n),n)
(Start backward substitution)
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Partial Pivoting

Gaussian Elimination/Partial Pivoting Algorithm (4/4)

Step 10 Set x, = a(NROW(n),n + 1)/a(NROW(n),n)
(Start backward substitution)

Stepl1ll Fori=n-1,...,1

a(NROW(i),n + 1) — >3 ; a(NROW(i), ) -

setxi = a(NROW(i), 1)
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Partial Pivoting

Gaussian Elimination/Partial Pivoting Algorithm (4/4)

Step 10 Set x, = a(NROW(n),n + 1)/a(NROW(n),n)
(Start backward substitution)

Stepl1ll Fori=n-1,...,1

a(NROW(i),n + 1) — >3 ; a(NROW(i), ) -
a(NROW(i), i)

setx =

Step 12 OUTPUT (X1,...,Xn) (Procedure completed successfully)
STOP
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

Can Partial Pivoting fail?
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

Can Partial Pivoting fail?

@ Each multiplier m;; in the partial pivoting algorithm has magnitude
less than or equal to 1.
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

Can Partial Pivoting fail?

@ Each multiplier m;; in the partial pivoting algorithm has magnitude
less than or equal to 1.

@ Although this strategy is sufficient for many linear systems,
situations do arise when it is inadequate.
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

Can Partial Pivoting fail?

@ Each multiplier m;; in the partial pivoting algorithm has magnitude
less than or equal to 1.

@ Although this strategy is sufficient for many linear systems,
situations do arise when it is inadequate.

@ The following (contrived) example illusrates the point.
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

Example: When Partial Pivoting Fails

The linear system

E;: 30.00x1 + 591400x, = 591700
E,: 5.291x; — 6.130x, = 46.78

is the same as that in the two previous examples except that all the
entries in the first equation have been multiplied by 10%.
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

Example: When Partial Pivoting Fails
The linear system

E;: 30.00x1 + 591400x, = 591700
E,: 5.291x; — 6.130x, = 46.78

is the same as that in the two previous examples except that all the
entries in the first equation have been multiplied by 10%.

The partial pivoting procedure described in the algorithm with 4-digit
arithmetic leads to the same incorrect results as obtained in the first
example (Gaussian elimination without pivoting).
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

E;: 30.00x1 + 591400x, = 591700
E,: 5.291x; — 6.130x, =46.78

-

Apply Partial Pivoting

o
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

E;: 30.00x1 + 591400x, = 591700
E,: 5.291x; — 6.130x, =46.78

Apply Partial Pivoting

The maximal value in the first column is 30.00, and the multiplier

5.291

My = ——— = 0.1764
21 ™ 30.00

o
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

E;: 30.00x1 + 591400x, = 591700
E,: 5.291x; — 6.130x, =46.78

Apply Partial Pivoting
The maximal value in the first column is 30.00, and the multiplier

5.291

My = ——— = 0.1764
21 ™ 30.00

leads to the system
30.00x; + 591400x, ~ 591700
—104300x, ~ —104400
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Partial Pivoting

Gaussian Elimination with Partial Pivoting

E;: 30.00x1 + 591400x, = 591700
E,: 5.291x; — 6.130x, =46.78

Apply Partial Pivoting
The maximal value in the first column is 30.00, and the multiplier

5.291

My = ——— = 0.1764
21 ™ 30.00

leads to the system
30.00x; + 591400x, ~ 591700
—104300x, ~ —104400

which has the same inaccurate solutions as in the first example:
Xs ~ 1.001 and x; ~ —10.00.
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Scaled Partial Pivoting

Outline

e Gaussian Elimination with Scaled Partial (Scaled-Column) Pivoting
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Scaled Partial Pivoting

Gaussian Elimination with Scaled Partial Pivoting

Scaled Partial Pivoting
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Scaled Partial Pivoting

Gaussian Elimination with Scaled Partial Pivoting

Scaled Partial Pivoting

@ Scaled partial pivoting places the element in the pivot position that
is largest relative to the entries in its row.
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Scaled Partial Pivoting

Gaussian Elimination with Scaled Partial Pivoting

Scaled Partial Pivoting

@ Scaled partial pivoting places the element in the pivot position that
is largest relative to the entries in its row.

@ The first step in this procedure is to define a scale factor s; for

each row as

si = max |a|
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Scaled Partial Pivoting

@ Scaled partial pivoting places the element in the pivot position that
is largest relative to the entries in its row.

@ The first step in this procedure is to define a scale factor s; for

each row as
si = max |aj|
1<j<n
@ If we have s; = 0 for some i, then the system has no unique
solution since all entries in the ith row are 0.
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Scaled Partial Pivoting (Cont'd)

@ Assuming that this is not the case, the appropriate row
interchange to place zeros in the first column is determined by
choosing the least integer p with

a
31l _ max a1

and performing (E1) < (Ep).
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Scaled Partial Pivoting (Cont'd)

@ Assuming that this is not the case, the appropriate row
interchange to place zeros in the first column is determined by
choosing the least integer p with

a
31l _ max a1

and performing (E1) < (Ep).
@ The effect of scaling is to ensure that the largest element in each

row has a relative magnitude of 1 before the comparison for row
interchange is performed.
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@ In a similar manner, before eliminating the variable x; using the
operations
Ex — miEj, fork=i+1,...,n,

we select the smallest integer p > i with

| p|| — max | k||

and perform the row interchange (E;) < (Ep) ifi # p.
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Scaled Partial Pivoting (Cont'd)

@ In a similar manner, before eliminating the variable x; using the
operations

Ex — miEj, fork=i+1,...,n,
we select the smallest integer p > i with

| p|| — max | k||

and perform the row interchange (E;) < (Ep) ifi # p.

@ The scale factors sy, ..., s, are computed only once, at the start
of the procedure.

o
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Scaled Partial Pivoting (Cont'd)

@ In a similar manner, before eliminating the variable x; using the
operations

Ex — miEj, fork=i+1,...,n,

we select the smallest integer p > i with

a . .
|api — max |ai
and perform the row interchange (E;) < (Ep) ifi # p.

@ The scale factors sy, ..., s, are computed only once, at the start
of the procedure.

@ They are row dependent, so they must also be interchanged when
row interchanges are performed.

o

Numerical Analysis (Chapter 6) Pivoting Strategies R L Burden & J D Faires 29/34



Scaled Partial Pivoting

Gaussian Elimination with Scaled Partial Pivoting

Returning to the previous ewxample, we will appl scaled partial
pivoting for the linear system:

E;: 30.00x1 + 591400x, = 591700
E,: 5.291x; — 6.130x, =46.78
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E;: 30.00x; + 591400x, = 591700
E,: 5.291x; — 6.130x, — 46.78

Solution (1/2)

o
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E;: 30.00x; + 591400x, = 591700
E,: 5.291x; — 6.130x, — 46.78

Solution (1/2)
We compute
s; = max{|30.00|,]591400|} = 591400
and s, = max{|5.291|,|-6.130|} = 6.130

o
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Gaussian Elimination with Scaled Partial Pivoting

E;: 30.00x; + 591400x, = 591700
E,: 5.291x; — 6.130x, — 46.78

Solution (1/2)

We compute
s; = max{|30.00[,|591400|} = 591400
and s, = max{|5.291|,|-6.130|} = 6.130
so that
\all\ 30.00 _4 ’821’ 5.291
= = 0.5073 x 10 —— = ——=0.8631
s. 591400 S s, 6.130 :
and the interchange (E;) < (E;) is made.

o

Numerical Analysis (Chapter 6) Pivoting Strategies R L Burden & J D Faires 31/34



Scaled Partial Pivoting

Gaussian Elimination with Scaled Partial Pivoting

Solution (2/2)

Applying Gaussian elimination to the new system

5.291x; — 6.130x, = 46.78
30.00x; + 591400x, = 591700

produces the correct results: x; = 10.00 and x, = 1.000.
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Scaled Partial Pivoting

Gaussian Elimination/Scaled Partial Pivoting Algorithm

The only steps in this algorithm that differ from those of the Gaussian
Elimination with Scaled Partial Pivoting Algorithm are: J
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Gaussian Elimination/Scaled Partial Pivoting Algorithm

The only steps in this algorithm that differ from those of the Gaussian
Elimination with Scaled Partial Pivoting Algorithm are:

Stepl Fori=1,...,nsets; = maxi<j<n |aj]
if s; = 0 then OUTPUT (‘no unique solution exists’)
STOP
else set NROW(i) =i
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The only steps in this algorithm that differ from those of the Gaussian
Elimination with Scaled Partial Pivoting Algorithm are:

Stepl Fori=1,...,nsets; = maxi<j<n |aj]
if s; = 0 then OUTPUT (‘no unique solution exists’)
STOP
else set NROW(i) =i

Step2 Fori=1,...,n—1do Steps 3-6 (Elimination process)

w
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Gaussian Elimination/Scaled Partial Pivoting Algorithm

The only steps in this algorithm that differ from those of the Gaussian
Elimination with Scaled Partial Pivoting Algorithm are:

Stepl Fori=1,...,nsets; = maxi<j<n |aj]
if s; = 0 then OUTPUT (‘no unique solution exists’)
STOP
else set NROW(i) =i

Step2 Fori=1,...,n—1do Steps 3-6 (Elimination process)
Step 3 Let p be the smallest integer withi < p < n and

[a(NROW(p), i)| _ [a(NROW()), )|
s(NROW(p)) i<ji<n  S(NROW(j))
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