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Terminology

Introduction

Linear Systems of Equations

We will consider direct methods for solving a linear system of n
equations in n variables.
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Terminology

Introduction

Linear Systems of Equations

We will consider direct methods for solving a linear system of n
equations in n variables. Such a system has the form:

Ei: apXg +apXs +--- 4 appXn = by
Ex: apiXy +agXy + -+ azxXn = by

En: aniXy + anaXa + -+ + annXn = by
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Terminology

Introduction

Linear Systems of Equations

We will consider direct methods for solving a linear system of n
equations in n variables. Such a system has the form:

Ei: apXg +apXs +--- 4 appXn = by
Ex: apiXy +agXy + -+ azxXn = by

En: aniXy + anaXa + -+ + annXn = by

In this system we are given the constants a;;, for eachi,j=1,2,...,n,
and b;, foreachi =1,2,...,n, and we need to determine the
unknowns Xq, . .., Xn.

Numerical Analysis (Chapter 6) Linear Systems of Equations R L Burden & J D Faires 4/43



Terminology

Introduction

Direct Methods & Round-off Error

Numerical Analysis (Chapter 6) Linear Systems of Equations R L Burden & J D Faires 5/43



Terminology

Introduction

Direct Methods & Round-off Error

@ Direct techniques are methods that theoretically give the exact
solution to the system in a finite number of steps.
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Terminology

Introduction

Direct Methods & Round-off Error

@ Direct techniques are methods that theoretically give the exact
solution to the system in a finite number of steps.

@ In practice, of course, the solution obtained will be contaminated
by the round-off error that is involved with the arithmetic being
used.

Numerical Analysis (Chapter 6) Linear Systems of Equations R L Burden & J D Faires 5/43



Terminology

Introduction

Direct Methods & Round-off Error

@ Direct techniques are methods that theoretically give the exact
solution to the system in a finite number of steps.

@ In practice, of course, the solution obtained will be contaminated
by the round-off error that is involved with the arithmetic being
used.

@ Analyzing the effect of this round-off error and determining ways
to keep it under control will be a major component of this
presentation.

Numerical Analysis (Chapter 6) Linear Systems of Equations R L Burden & J D Faires

5/43



Terminology

Introduction

Direct Methods & Round-off Error

@ Direct techniques are methods that theoretically give the exact
solution to the system in a finite number of steps.

@ In practice, of course, the solution obtained will be contaminated
by the round-off error that is involved with the arithmetic being
used.

@ Analyzing the effect of this round-off error and determining ways
to keep it under control will be a major component of this
presentation.

We begin, however, by introducing some important terminology and
notation.
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Terminology

Matrices & Vectors

Definition of a Matrix

Ann x m (n by m) matrix is a rectangular array of elements with n
rows and m columns in which not only is the value of an element
important, but also its position in the array.
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Terminology

Matrices & Vectors

Definition of a Matrix

Ann x m (n by m) matrix is a rectangular array of elements with n
rows and m columns in which not only is the value of an element
important, but also its position in the array.

A\

Notation

The notation for an n x m matrix will be a capital letter such as A for
the matrix and lowercase letters with double subscripts, such as ajj, to

refer to the entry at the intersection of the ith row and jth column; that
is:

ajpz a1z - Aim

dp1 dzz -+ Azm
A= [aij] = . ]

dn1 an2 - anm
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Terminology

Matrices & Vectors

A Vector is a special case

The 1 x n matrix
A=[a;; ajp - ain)

is called an n-dimensional row vector, and an n x 1 matrix

is called an n-dimensional column vector.
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Terminology

Matrices & Vectors

A Vector is a special case (Cont'd)

Usually the unnecessary subscripts are omitted for vectors, and a
boldface lowercase letter is used for notation. Thus

X1

X2
X =

Xn

denotes a column vector, and

Yy=1[y1 Y2 ... ¥n]

a row vector.
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Terminology

Matrices & Vectors: Augmented Matrix

The Augmented Matrix (1/2)

Ann x (n+ 1) matrix can be used to represent the linear system
aiXy +apXe + - +aXn = by,
Ap1Xy +axpXy + -+ +ayXn = by,
an1X1 + ap2X2 + - +a@mXn = bp,
v
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Terminology

Matrices & Vectors: Augmented Matrix

The Augmented Matrix (1/2)

Ann x (n+ 1) matrix can be used to represent the linear system

a11X1 + 12X + - - -
ap1X1 + Xy + - - -

an1Xy + anaXp + - - -

by first constructing

ai; ai2

dp1 a2
A= [aij] =

dn1  an2

Numerical Analysis (Chapter 6)

Linear Systems of Equations

+ainXn = by,

+axXn = by,

+anXn = bnp,

ain by

azn 2
. and b=

Ann bn
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Terminology

Matrices & Vectors: Augmented Matrix

The Augmented Matrix (2/2)
and then forming the new array [A, b]:

a;1 app -+ ain | b

ayp1 agp -+ Ay | by
b= | "

a1 a@np2 -+ ann | bn
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Terminology

Matrices & Vectors: Augmented Matrix

The Augmented Matrix (2/2)
and then forming the new array [A, b]:

a;1 app -+ ain | b

ayp1 agp -+ Ay | by
b= | "

a1 a@np2 -+ ann | bn

where the vertical line is used to separate the coefficients of the
unknowns from the values on the right-hand side of the equations.
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Terminology

Matrices & Vectors: Augmented Matrix

The Augmented Matrix (2/2)
and then forming the new array [A, b]:

a;1 app -+ ain | b

ayp1 agp -+ Ay | by
b= | "

a1 a@np2 -+ ann | bn

where the vertical line is used to separate the coefficients of the
unknowns from the values on the right-hand side of the equations.

The array [A, b] is called an augmented matrix.
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Terminology

Matrices & Vectors: Augmented Matrix

Representing the Linear System

In what follows, the n x (n + 1) matrix

a;1 app -+ ai | b

ayp1 agp -+ Ay | by
[A b] = )

an1 ap2 -+ @ | bn
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Terminology

Matrices & Vectors: Augmented Matrix

Representing the Linear System

In what follows, the n x (n + 1) matrix

a;1 app -+ ai | b

ayp1 agp -+ Ay | by
[A7 b] = . . .

an1 ap2 -+ @ | bn

will used to represent the linear system

aiXy +apXe + - +ammXn = by
Ap1Xy +axpXp + - +aymXn = by
an1X1 +ap2Xg + -+ +a@mXn = bp
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Permissible Operations

Outline

Q 3 Operations to Simplify a Linear System of Equations
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Permissible Operations

Simplifying a Linear Systems of Equations

The Linear System

Returning to the linear system of n equations in n variables:

Ei: apXg +apXy + -+ apXn = by
Ex: aiXy +agXy + -+ axXn = by

En: aniXy + anaXa + -+ + annXn = by

where we are given the constants a;;, for eachi,j =1,2,...,n, and b;,
foreachi=1,2,...,n,
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Permissible Operations

Simplifying a Linear Systems of Equations

The Linear System

Returning to the linear system of n equations in n variables:

Ei: apXg +apXy + -+ apXn = by
Ex: aiXy +agXy + -+ axXn = by

En: aniXy + anaXa + -+ + annXn = by

where we are given the constants a;;, for eachi,j =1,2,...,n, and b;,
foreachi =1,2,...,n, we need to determine the unknowns X, ..., Xn.
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Permissible Operations

Simplifying a Linear Systems of Equations

Permissible Operations

We will use 3 operations to simplify the linear system:
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Permissible Operations

Simplifying a Linear Systems of Equations

Permissible Operations

We will use 3 operations to simplify the linear system:

© Equation E; can be multiplied by any nonzero constant A with the
resulting equation used in place of E;. This operation is denoted
(AEi) — (Ei).
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Simplifying a Linear Systems of Equations

Permissible Operations

We will use 3 operations to simplify the linear system:

© Equation E; can be multiplied by any nonzero constant A with the
resulting equation used in place of E;. This operation is denoted
(AEi) — (Ei).

@ Equation E; can be multiplied by any constant X and added to
equation E; with the resulting equation used in place of E;. This
operation is denoted (E; + AEj) — (E;).
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Permissible Operations

Simplifying a Linear Systems of Equations

Permissible Operations

We will use 3 operations to simplify the linear system:

© Equation E; can be multiplied by any nonzero constant A with the
resulting equation used in place of E;. This operation is denoted
(AEi) — (Ei).

@ Equation E; can be multiplied by any constant X and added to
equation E; with the resulting equation used in place of E;. This
operation is denoted (E; + AEj) — (E;).

© Equations E; and E; can be transposed in order. This operation is
denoted (E;) < (Ej).

o
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Permissible Operations

Simplifying a Linear Systems of Equations

Permissible Operations

We will use 3 operations to simplify the linear system:

© Equation E; can be multiplied by any nonzero constant A with the
resulting equation used in place of E;. This operation is denoted
(AEi) — (Ei).

@ Equation E; can be multiplied by any constant A and added to
equation E; with the resulting equation used in place of E;. This
operation is denoted (E; + AEj) — (E;).

© Equations E; and E; can be transposed in order. This operation is
denoted (E;) < (Ej).

o

By a sequence of these operations, a linear system will be
systematically transformed into to a new linear system that is more
easily solved and has the same solutions.

w
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Permissible Operations

Simplifying a Linear Systems of Equations

lllustration

The four equations
E;: X1+ X + 3%, = 4
Eo: 214+ Xo— X3+ X3= 1
Ez: 3Xx;1— Xo— X3+ 2X4=-3
Es: X1 +2X%+3X3— X4= 4

will be solved for x4, X5, X3, and X4.
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Permissible Operations

Simplifying a Linear Systems of Equations

lllustration

The four equations
E;: X1+ X + 3%, = 4
Eo: 214+ Xo— X3+ X3= 1
Ez: 3Xx;1— Xo— X3+ 2X4=-3
Es: X1 +2X%+3X3— X4= 4

will be solved for x4, X5, X3, and X4.

We first use equation E; to eliminate the unknown x; from equations
E,, E3, and E4 by performing:
(E2 —2E1) — (E2)
(Es—3E1) — (Es)
and (E4 + El) — (E4)
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Permissible Operations

Simplifying a Linear Systems of Equations

Ei: Xi1+X +3x4=4
Er: 2X14+Xo—X3+ Xz=1
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Permissible Operations

Simplifying a Linear Systems of Equations

Ei: Xi1+X +3x4=4
Er: 2X14+Xo—X3+ Xz=1

o

[llustration Cont'd (2/5)

For example, in the second equation

(E2 — 2E1) — (E2)

produces
(2X1 + X2 — X3 + X4) — 2(X1 + X2 + 3%X4) = 1 — 2(4)
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Permissible Operations

Simplifying a Linear Systems of Equations

Ei: Xi1+X +3x4=4
Er: 2X14+Xo—X3+ Xz=1

o

[llustration Cont'd (2/5)

For example, in the second equation

(E2 — 2E1) — (E2)

produces
(2X1 + X2 — X3 + X4) — 2(X1 + X2 + 3%X4) = 1 — 2(4)

which simplifies to the result shown as E; in

Ei: X1 +X% + 3%, = 4
E,: —Xo — X3 —5X4 = —7
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Permissible Operations

Simplifying a Linear Systems of Equations

[llustration Cont'd (3/5)

Similarly for equations E3 and E,4 so that we obtain the new system:

Ei: X1+ X +3x= 4
E,: — Xo— Xg—5X4= -7
Es: —4Xy — Xz — TXg4 = —15
E4: 3Xo+3X3+2X4 = 8

For simplicity, the new equations are again labeled Eq, E,, E3, and E,4.
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Permissible Operations

Simplifying a Linear Systems of Equations

[llustration Cont'd (4/5)

In the new system, E, is used to eliminate the unknown x, from Ez and
E4 by performing (Es — 4E;) — (E3) and (E4 + 3E2) — (Ea).
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Permissible Operations

Simplifying a Linear Systems of Equations

[llustration Cont'd (4/5)

In the new system, E, is used to eliminate the unknown x, from Ez and
E,4 by performing (E3 — 4E;) — (E3) and (E4 + 3E;) — (E4). This
results in

Ei: X1+X% + 3x4 = 4,
E,: —Xo — Xz— bBXg= -7,
Es: 3X3 + 13x4 = 13,
E,s: — 13x4 = —13.
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Permissible Operations

Simplifying a Linear Systems of Equations

[llustration Cont'd (4/5)

In the new system, E, is used to eliminate the unknown x, from Ez and
E,4 by performing (E3 — 4E;) — (E3) and (E4 + 3E;) — (E4). This
results in

Ei: X1+X% + 3x4 = 4,
E,: —Xo — Xz— bBXg= -7,
Es: 3X3 + 13x4 = 13,
E,s: — 13x4 = —13.

This latter system of equations is now in triangular (or reduced) form
and can be solved for the unknowns by a backward-substitution
process.
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Permissible Operations

Simplifying a Linear Systems of Equations

lllustration Cont’d (5/5)

Since E,4 implies x4 = 1, we can solve Ej3 for X3 to give

1 1
Xs = 3(13 ~ 13x4) = 5(13 - 13) = 0.
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Permissible Operations

Simplifying a Linear Systems of Equations

lllustration Cont’d (5/5)

Since E,4 implies x4 = 1, we can solve Ej3 for X3 to give

1 1
Xs = 3(13 ~ 13x4) = 5(13 - 13) = 0.

Continuing, E, gives

Xp=—(=74+5X4+X%X3)=—(—7+5+0)=2,

Numerical Analysis (Chapter 6) Linear Systems of Equations R L Burden & J D Faires 19/43



Permissible Operations

Simplifying a Linear Systems of Equations

lllustration Cont’d (5/5)

Since E,4 implies x4 = 1, we can solve Ej3 for X3 to give

1 1
Xs = 3(13 ~ 13x4) = 5(13 - 13) = 0.

Continuing, E, gives
Xp=—(=74+5X4+X%X3)=—(—7+5+0)=2,
and E4 gives

X1:4*3X4*X2:4*3*2:*1.

Numerical Analysis (Chapter 6) Linear Systems of Equations R L Burden & J D Faires



Permissible Operations

Simplifying a Linear Systems of Equations

lllustration Cont’d (5/5)

Since E,4 implies x4 = 1, we can solve Ej3 for X3 to give

1 1
Xs = 3(13 ~ 13x4) = 5(13 - 13) = 0.

Continuing, E, gives
Xp=—(=74+5X4+X%X3)=—(—7+5+0)=2,
and E4 gives

X1:4*3X4*X2:4*3*2:*1.

The solution is therefore, x; = —1, X, =2, X3 = 0, and x4 = 1.

Numerical Analysis (Chapter 6) Linear Systems of Equations R L Burden & J D Faires



Gaussian Elimination

Outline

e Gaussian Elimination Procedure
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Gaussian Elimination

Constructing an Algorithm to Solve the Linear System

E;: X1+ Xo +3X4= 4
Eo: 214+ X — X3+ X4= 1
Ez: 3X1— Xo— Xz+2X4=-3

Es: X1 +2X%+3X3— X4= 4
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Gaussian Elimination

Constructing an Algorithm to Solve the Linear System

E;: X1+ X2 +3X4= 4
Eo: 214+ X — X3+ X4= 1
Ez: 3X1— Xo— Xg+2X4=-3
Es: —X1+2X+3X3— X4= 4

-

Converting to Augmented Form

Repeating the operations involved in the previous illustration with the
matrix notation results in first considering the augmented matrix:

1 1 0 3| 4
2 1 -1 1| 1
3 -1 -1 2|-3
-1 2 3 -1 4
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Gaussian Elimination

Constructing an Algorithm to Solve the Linear System

Reducing to Triangular Form
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Gaussian Elimination

Constructing an Algorithm to Solve the Linear System

Reducing to Triangular Form

Performing the operations as described in the earlier example
produces the augmented matrices:

1 0 3 4 1 1 O 3 4
-1 -1 -5| -7 and 0 -1 -1 -5| -7
-4 -1 —-7|-15 0 o0 3 13| 13

3 3 2 8 0O 0O O -13|-13

O OO R
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Gaussian Elimination

Constructing an Algorithm to Solve the Linear System

Reducing to Triangular Form

Performing the operations as described in the earlier example
produces the augmented matrices:

1 0 3 4 1 1 O 3 4
-1 -1 -5| -7 and 0 -1 -1 -5| -7
-4 -1 —-7|-15 0 o0 3 13| 13

3 3 2 8 0O 0O O -13|-13

O OO R

The final matrix can now be transformed into its corresponding linear
system, and solutions for x;, X5, X3, and X4, can be obtained. The
procedure is called Gaussian elimination with backward substitution.

ol
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Gaussian Elimination

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure

The general Gaussian elimination procedure applied to the linear
system

E1: auXxp+apXe+ - +amXn=by

Ez: @ziXy +axpXe + -+ +axnXsh = by

En: aniXg + anaXa + -+ + annXn = by

will be handled in a similar manner.
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Gaussian Elimination

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

@ First form the augmented matrix A:

a1 ai2 -+ Aip | Aint1
= dp1 QApz -+ dgpn | A2nt1
A=[ADb]= i . . .
An1 Ap2 - Apn | Anntl

where A denotes the matrix formed by the coefficients.
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Gaussian Elimination

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

@ First form the augmented matrix A:

a1 ai2 -+ Aip | Aint1
= dp1 QApz -+ dgpn | A2nt1
A=[ADb]= i . . .
An1 Ap2 - Apn | Anntl

where A denotes the matrix formed by the coefficients.

@ The entries in the (n + 1)st column are the values of b; that is,
ajnt1 = bjforeachi=1,2,...,n.
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Gaussian Elimination

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

@ Provided a;; # 0, we perform the operations corresponding to

(Ej — (aj1/@11)E1) — (Ej) foreachj=2,3,...,n

to eliminate the coefficient of x; in each of these rows.
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Gaussian Elimination

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

@ Provided a;; # 0, we perform the operations corresponding to

(Ej — (aj1/@11)E1) — (Ej) foreachj=2,3,...,n

to eliminate the coefficient of x; in each of these rows.

@ Although the entries in rows 2,3, ..., n are expected to change, for
ease of notation we again denote the entry in the ith row and the
jth column by a.

o
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Gaussian Elimination

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

@ Provided a;; # 0, we perform the operations corresponding to

(Ej — (aj1/@11)E1) — (Ej) foreachj=2,3,...,n

to eliminate the coefficient of x; in each of these rows.

@ Although the entries in rows 2,3, ..., n are expected to change, for
ease of notation we again denote the entry in the ith row and the
jth column by a.

@ With this in mind, we follow a sequential procedure for
i =2,3,...,n —1 and perform the operation

(Ej — (aji/ai)Ej) — (Ej) foreachj=i+1,i+2,...,n,

provided a;j # 0.

o
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Gaussian Elimination

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

@ This eliminates (changes the coefficient to zero) x; in each row
below the ith for all values of i =1,2,...,n— 1.
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Gaussian Elimination

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

@ This eliminates (changes the coefficient to zero) x; in each row
below the ith for all values of i =1,2,...,n— 1.

@ The resulting matrix has the form:

a11 &12 -+ &ipn | A1ptl

% 0 axp - ax|aznt1
A= . .

0 - 0 ap|annm

where, except in the first row, the values of a; are not expected to
agree with those in the original matrix A.
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Gaussian Elimination

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

@ This eliminates (changes the coefficient to zero) x; in each row
below the ith for all values of i =1,2,...,n— 1.

@ The resulting matrix has the form:

a11 &12 -+ &ipn | A1ptl

% 0 axp - ax|aznt1
A= . .

0 - 0 ap|annm

where, except in the first row, the values of a; are not expected to
agree with those in the original matrix A.

@ The matrix A represents a linear system with the same solution
set as the original system.

o
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Gaussian Elimination

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

The new linear system is triangular,

a;nXy + apXe + -+ A;pXn = Ainp4l
axpXy + -+ 4+ 8xpXn = ani1
AnnXn = Aann+1

so backward substitution can be performed.
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Gaussian Elimination

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

The new linear system is triangular,

a;nXy + apXe + -+ A;pXn = Ainp4l
axpXy + -+ 4+ 8xpXn = ani1
AnnXn = Aann+1

so backward substitution can be performed. Solving the nth equation
for x, gives
a
Xy = n,n+1
Ann
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Gaussian Elimination

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

Solving the (n — 1)st equation for x,_; and using the known value for

Xn Yields
An—1,n+1 — An—1,nXn

Xn—1 =
An—1,n-1
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Gaussian Elimination

Gaussian Elimination with Backward Substitution

Basic Steps in the Procedure (Cont'd)

Solving the (n — 1)st equation for x,_; and using the known value for

Xn Yields
An—1,n+1 — An—1,nXn

Xn—1 =
An—1,n-1

Continuing this process, we obtain

= Aint+1 — AinXn — A pn—1Xn—1 — - — ji+1Xi+1
' Qi
n
C @i — s &%
Qi

foreachi=n—-1,n—-2,...,2,1.
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Gaussian Elimination

Gaussian Elimination with Backward Substitution

A More Precise Description

Gaussian elimination procedure is described more precisely, although
more intricately, by forming a sequence of augmented matrices AW,
A@ . A where A() is the matrix A given earlier and AK), for

eachk =2,3,...,n, has entries ai(jk), where:

25D

i wheni=1,2,....;k—1land j=1,2,...,n+1
(k) 0 wheni=Fk,k+1,...,nand j=1,2,... .k —1
Qi = 2D
g-c_l)— szl_)l a,(f:lz) wheni=Fkk+1,...,nand j=k,k+1,...,n+1
A—1,k—1

o
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Gaussian Elimination

Gaussian Elimination with Backward Substitution

A More Precise Description (Cont'd)

Thus
r 1 1 1 1 1 1 1 7
I T
0 ay; ay - a3, ayo o 8y a nt1
AL = (k .1) (k. 1) (k. 1) | Lk :1)
A _1k-1 -1k 7 H_an | F—1nt1
k k k
0 ay A | A
| 0 000 600 ooo 0 agkk) 000 ar(1I:1) agfr)]ﬂ |
represents the equivalent linear system for which the variable xy 1
has just been eliminated from equations Ey,Ex.1,...,En.

o
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Gaussian Elimination

Gaussian Elimination with Backward Substitution

A More Precise Description (Cont'd)

@ The procedure will fail if one of the elements a(lll), a(zzz), a(333), ey

(n-1) (n)
@y 1,1, @nn IS Zero because the step

a0

|

E; — ﬁ(Ek) — E;
A

either cannot be performed (this occurs if one of a(lll), e aglfr)]fl

is zero), or the backward substitution cannot be accomplished (in
the case aV) = 0).
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Gaussian Elimination

Gaussian Elimination with Backward Substitution

A More Precise Description (Cont'd)

@ The procedure will fail if one of the elements a(lll), a(zzz), a(333), ey
(n-1) (n)
@y 1,1, @nn IS Zero because the step
Ak
Ei — —’k(Ek) — E;
a®
kk
either cannot be performed (this occurs if one of a(lll), e aff:llr)]fl
is zero), or the backward substitution cannot be accomplished (in
the case aV) = 0).
@ The system may still have a solution, but the technique for finding
it must be altered.
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

Example
Represent the linear system

Ei: Xi— Xp+2X3— X4 = -8
Es: 2% — 2%y +3%x3 — 3x4 = —20
Ez: X1+ Xo+ Xg = -2
Es: X1— Xo+4X3+3x4= 4

as an augmented matrix and use Gaussian Elimination to find its
solution.
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

Solution (1/6)
The augmented matrix is

1 -1 2 -1, -8

~ 2 -2 3 -3|-20
— AW —

A=A 1 11 0| -2

1 -1 4 3 4

Numerical Analysis (Chapter 6) Linear Systems of Equations R L Burden & J D Faires 33/43



Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

Solution (1/6)
The augmented matrix is

1 -1 2 -1, -8

~ 2 -2 3 -3|-20
— AW —

A=A 1 11 0| -2

1 -1 4 3 4

Performing the operations

(Ez — 2E1) — (Ez), (E3 — El) — (Eg) and (E4 — El) — (E4)
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

Solution (1/6)
The augmented matrix is

1 -1 2 -1, -8

~ 2 -2 3 -3|-20
— AW —

A=A 1 11 0| -2

1 -1 4 3 4

Performing the operations

(Ez — 2E1) — (Ez), (E3 — El) — (Eg) and (E4 — El) — (E4)

gives 1 -1 2 -1]-8
i_ |0 0 -1 -1|-4

0 2 -1 1| 6

0 0 2 4|12

Numerical Analysis (Chapter 6) Linear Systems of Equations R L Burden & J D Faires
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

-1 2 -1|-8
0 -1 -1|-4
2 -1 1| 6
0 2 412

O OOk
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

1
0
0
0

-1 2 -1|-8
0 -1 -1|-4
2 -1 1| 6
0 2 412

Solution (2/6)

@ The diagonal entry agzz), called the pivot element, is O, so the

procedure cannot continue in its present form.
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

1
0
0
0

-1 2 -1|-8
0 -1 -1|-4
2 -1 1| 6
0 2 412

Solution (2/6)

@ The diagonal entry agzz), called the pivot element, is O, so the
procedure cannot continue in its present form.

@ But operations (E;) < (E;) are permitted, so a search is made of
the elements agzz) and affz) for the first nonzero element.
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

1
0
0
0

-1 2 -1|-8
0 -1 -1|-4
2 -1 1| 6
0 2 412

Solution (2/6)

@ The diagonal entry agzz), called the pivot element, is O, so the

procedure cannot continue in its present form.
@ But operations (E;) < (E;) are permitted, so a search is made of
the elements agzz) and affz) for the first nonzero element.

@ Since a%) # 0, the operation (E,) < (E3) can be performed to
obtain a new matrix.
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

-1 2 -1]-8
0 -1 —-1|-4
2 -1 1| 6
0 2 4|12

O OO PR
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

1
0
0
0

-1 2 -1)|-8
0O -1 -1|-4
2 -1 1| 6
0 2 412

| A\

Solution (3/6)
Perform the operation (E,) < (E3) to obtain a new matrix:

1 -1 2 -1|-8
Aer_ |0 2 -1 1| 6
0 0 -1 —1|-4
0 0 2 4|12
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

-1 2 -1|-8
2 -1 1| 6
0O -1 -1|-4
0O 2 412

AQ —

O OO
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

1
0
0
0

-1 2 -1|-8
2 -1 1| 6
0O -1 -1|-4
0O 2 412

AQ —

Solution (4/6)

Since x; is already eliminated from E5 and E,, A®) will be A®', and
the computations continue with the operation (E4 + 2E3) — (E4), giving

-1 2 -1|-8
2 -1 1| 6
0O -1 -1|-4
0O 0 2| 4

O OO
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

-1 2 -1)|-8
2 -1 1| 6
0 -1 -1|-4
O 0 2| 4

O OO PR

R L Burden & J D Faires
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

1
0
0
0

-1 2 -1)|-8
2 -1 1| 6
0 -1 -1|-4
O 0 2| 4

Solution (5/6)

The solution may now be found through backward substitution:

4
X4 = 522

Al4) —

37/43
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

Solution (5/6)

Al4) —

1 -1 2 -1|-8
0O 2 -1 1| 6
0O 0 -1 -1|-4
0O 0O O 2| 4

The solution may now be found through backward substitution:

Xqg =

X3 =

4

5 = 2

(-4 (~1)xa] _
-1

2

R L Burden & J D Faires

-
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

Solution (5/6)

Al4) —

1 -1 2 -1|-8
0O 2 -1 1| 6
0O 0 -1 -1|-4
0O 0O O 2| 4

The solution may now be found through backward substitution:

Xqg =

X3 =

Xo =

4

2-°

[-4— (~1)xa] _
-1

[6 x4 — (~1)xs] _

2

-

37/43

Numerical Analysis (Chapter 6)

Linear Systems of Equations R L Burden & J D Faires



Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

Solution (5/6)

1 -1 2 -1|-8
sm_ |0 2 -1 1|6
0 0 -1 -1|-4
0O 0 0 2| 4

The solution may now be found through backward substitution:

X4

X3

X2

X1

4
= ;=2
[-4—(=1)xa] _
-1
[6 —xa — (=1)xs] _ 4
2
[-8 — (=1)xa —2xg — (=1)x2] _
1

2

-7

-
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

Solution (6/6): Some Observations

@ The example illustrates what is done if ai((kk) = 0 for some
k=12,...,n-1
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

Solution (6/6): Some Observations

@ The example illustrates what is done if ai((kk) = 0 for some
k=12,...,n-1

@ The kth column of A®—1) from the kth row to the nth row is
searched for the first nonzero entry.
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

Solution (6/6): Some Observations

@ The example illustrates what is done if ai((kk) = 0 for some
k=12,...,n-1

@ The kth column of A®—1) from the kth row to the nth row is
searched for the first nonzero entry.

o If a 7£ 0 for some p,with k + 1 < p < n, then the operation
(Ek) (Ep) is performed to obtain A=1)",
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

Solution (6/6): Some Observations

@ The example illustrates what is done if ai((kk) = 0 for some
k=12,...,n-1

@ The kth column of A®—1) from the kth row to the nth row is
searched for the first nonzero entry.

o If a 7£ 0 for some p,with k + 1 < p < n, then the operation
(Ek) (Ep) is performed to obtain A=1)",
@ The procedure can then be continued to form AK), and so on.
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

Solution (6/6): Some Observations

@ The example illustrates what is done if ai((kk) = 0 for some
k=12,...,n-1

@ The kth column of A®—1) from the kth row to the nth row is
searched for the first nonzero entry.

o If a 7£ 0 for some p,with k + 1 < p < n, then the operation
(Ek) (Ep) is performed to obtain A=1)",
@ The procedure can then be continued to form AK), and so on.

o If agl‘() = 0 for each p, it can be shown that the linear system does
not have a unigue solution and the procedure stops.

o
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Gaussian Elimination

lllustration of the Gaussian Elimination Procedure

Solution (6/6): Some Observations

@ The example illustrates what is done if ai((kk) = 0 for some
k=1,2,....n—1.

@ The kth column of Ak=1) from the kth row to the nth row is
searched for the first nonzero entry.

o If a 7£ 0 for some p,with k + 1 < p < n, then the operation
(Ek) (Ep) is performed to obtain A=1)",
@ The procedure can then be continued to form AK), and so on.

o If agl‘() = 0 for each p, it can be shown that the linear system does
not have a unigue solution and the procedure stops.

@ Finally, if a( ) — = 0, the linear system does not have a unique
solution, and again the procedure stops.

o
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GE/BS Algorithm

Outline

e The Gaussian Elimination with Backward Substitution Algorithm
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GE/BS Algorithm

Gaussian Elimination with Backward Substitution Algorithm (1/3)

To solve the n x n linear system

E1: anXg+apXe + - +amXn = agnts
Ex: apiXg +agXy + - +aXn = A2 nt1

En: @niXy +an2X2 + -+ + @nnXn = annt1
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GE/BS Algorithm

Gaussian Elimination with Backward Substitution Algorithm (1/3)

To solve the n x n linear system

E1: anXg+apXe + - +amXn = agnts
Ex: apiXg +agXy + - +aXn = A2 nt1

En: @niXy +an2X2 + -+ + @nnXn = annt1

INPUT number of unknowns and equations n; augmented
matrix A = [a;], where1 <i<nand1<j<n+1.
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GE/BS Algorithm

Gaussian Elimination with Backward Substitution Algorithm (1/3)

To solve the n x n linear system

E1: anXg+apXe + - +amXn = agnts
Ex: apiXg +agXy + - +aXn = A2 nt1

En: @niXy +an2X2 + -+ + @nnXn = annt1

INPUT number of unknowns and equations n; augmented
matrix A = [a;], where1 <i<nand1<j<n+1.

OUTPUT solution X4, Xz, ..., Xy Or message that the linear system
has no unigue solution.

Numerical Analysis (Chapter 6) Linear Systems of Equations R L Burden & J D Faires 40/ 43



GE/BS Algorithm

Gaussian Elimination with Backward Substitution Algorithm (2/3)

Stepl Fori=1,...,n—1do Steps 2-4: (Elimination process)
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GE/BS Algorithm

Gaussian Elimination with Backward Substitution Algorithm (2/3)

Stepl Fori=1,...,n—1do Steps 2-4: (Elimination process)

Step 2 Let p be the smallest integer withi < p <nand a, # 0
If no integer p can be found
then OUTPUT (‘no unique solution exists’)
STOP
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GE/BS Algorithm

Gaussian Elimination with Backward Substitution Algorithm (2/3)

Stepl Fori=1,...,n—1do Steps 2-4: (Elimination process)

Step 2 Let p be the smallest integer withi < p <nand a, # 0
If no integer p can be found
then OUTPUT (‘no unique solution exists’)
STOP

Step 3 If p # i then perform (E,) < (Ej)
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GE/BS Algorithm

Gaussian Elimination with Backward Substitution Algorithm (2/3)

Stepl Fori=1,...,n—1do Steps 2—4: (Elimination process)
Step 2 Let p be the smallest integer withi < p <nand a, # 0
If no integer p can be found
then OUTPUT (‘no unique solution exists’)
STOP
Step 3 If p # i then perform (E,) < (Ej)
Step4 Forj=i+1,...,ndo Steps 5 and 6:

Step5 Setm; = aji/aii
Step 6 Perform (E; — m;E;) — (E)
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GE/BS Algorithm

Gaussian Elimination with Backward Substitution Algorithm (3/3)

Step7 Ifanm=0
then OUTPUT (‘no unique solution exists’)
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GE/BS Algorithm

Gaussian Elimination with Backward Substitution Algorithm (3/3)

Step7 Ifanm=0
then OUTPUT (‘no unique solution exists’)

Step8  SetXxp =anny1/ann  (Start backward substitution)
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GE/BS Algorithm

Gaussian Elimination with Backward Substitution Algorithm (3/3)

Step7 Ifanm=0
then OUTPUT (‘no unique solution exists’)

Step8  SetXxp =anny1/ann  (Start backward substitution)

Step9 Fori=n-—-1,...,1setx; = Qjint1 — Zjn:iJrl ainj] /aii
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GE/BS Algorithm

Gaussian Elimination with Backward Substitution Algorithm (3/3)

Step7 Ifanm=0
then OUTPUT (‘no unique solution exists’)

Step8  SetXxp =anny1/ann  (Start backward substitution)
Step9 Fori=n-1,...,1setx; = |aint1 — Zj”:iH ainj] /aii

Step 10 OUTPUT (X1,...,Xn) (Procedure completed successfully)
STOP
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Questions?
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