
Chapter 4. Numerical Integration

Section 1. Newton-Cotes Formulas

In most cases, the antiderivative of a given function f(x) is not known, and then the
explicit expression of the integral Z b

a
f(x)dx

can not be obtained. Thus, approximation to this integral is necessary, which is called
numerical quadrature, Z b

a
f(x)dx �

nX
i=0

aif(xi)

1. Trapezoidal rule. (Burden & Faires, 4.3)
If f(x) is approximated by the linear interpolation polynomial

P (x) =
(x� x1)

(x0 � x1)
f(x0) +

(x� x0)

(x1 � x0)
f(x1)

where x0 = a and x1 = b, then we haveZ b

a
f(x)dx =

Z x1

x0

"
(x� x1)

(x0 � x1)
f(x0) +

(x� x0)

(x1 � x0)
f(x1)

#
dx

+
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2

Z x1

x0
f 00(�)(x� x0)(x� x1)dx

=
h

2
[f(a) + f(b)]�

h3

12
f 00(�)

where h = b� a. This is called the Trapezoidal rule.

2. Simpson's rule. (Burden & Faires, 4.3)
Let x0 = a, x2 = b, and x1 = a+h, where h = (b�a)=2. Let x 2 [a; b], using Taylor's

theorem we have

f(x) = f(x1) + f 0(x1)(x� x1) +
f 00(x1)

2
(x� x1)

2 +
f 000(x1)

6
(x� x1)

3 +
f (4)(�)

24
(x� x1)
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Then we haveZ b

a
f(x)dx =

Z x2

x0

"
f(x1) + f 0(x1)(x� x1) +

f 00(x1)

2
(x� x1)

2 +
f 000(x1)

6
(x� x1)

3

#
dx+

1

24

Z x2

x0
f (4)(�)(x� x1)

4dx

= 2hf(x1) +
h3

3
f 00(x1) +

f (4)(�1)

24

Z x2

x0
(x� x1)

4dx

= 2hf(x1) +
h3

3
f 00(x1) +

f (4)(�1)

60
h5dx



Using Taylor's theorem we have

f 00(x1) =
1

h2
[f(x0)� 2f(x1) + f(x2)]�

h2

12
f (4)(�2)

Thus, we have the Simpson's rule,

Z b

a
f(x)dx =

h

3
[f(x0) + 4f(x1) + f(x2)]�

h5

90
f (4)(�)

De�nition 4.1. The degree of accuracy, or precision, of a quadrature formula is
the largest positive integer n such that the formula is exact for xk, k = 0; 1; 2; � � � ; n.

By this de�nition, the Trapezoidal rule has the degree of precision one, and the Simpson's
rule has the degree of precision three.

3. Newton-Cotes Formulas (Burden & Faires, 4.3) In general, if we use the Lagrange
interpolation polynomial Pn(x) to approximate f(x), we obtain the Newton-Cotes For-
mula, Z b

a
f(x)dx �

nX
i=0

aif(xi)

where x0 = a, xn = b, xi = x0 + ih with h = (b� a)=n, and

ai =
Z xn

x0
Li(x)dx =

Z xn

x0

nY
j=0;j 6=i

(x� xj)

(xi � xj)
dx

Theorem 4.2. (Closed Newton-Cotes Formulas) Let x0 = a; xn = b, and xi =
x0 + ih with h = (b� a)=n. If n is even and f 2 Cn+2[a; b], then

Z b

a
f(x)dx =

nX
i=0

aif(xi) +
hn+3f (n+2)(�)

(n+ 2)!

Z n

0
t2(t� 1) � � � (t� n)dt

If n is odd and f 2 Cn+1[a; b], then

Z b

a
f(x)dx =

nX
i=0

aif(xi) +
hn+2f (n+1)(�)

(n+ 1)!

Z n

0
t(t� 1) � � � (t� n)dt

This quadrature formula is called closed Newton-Cotes Formula since the endpoints
of [a; b] are included as nodes. The Trapezoidal Rule and Simpson's Rule are the special
cases of the Newton-Cotes Formula when n = 1 and n = 2.

� n = 1: Trapezoidal rule

Z x1

x0
f(x)dx =

h

2
[f(x0) + f(x1)]�

h3

12
f 00(�)
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� n = 2: Simpsom's rule

Z x2

x0
f(x)dx =

h

3
[f(x0) + 4f(x1) + f(x2)]�

h5

90
f (4)(�)

� n = 3: Simpsom's Three-Eights rule

Z x3

x0
f(x)dx =

3h

8
[f(x0) + 3f(x1) + 3f(x2) + f(x3)]�

3h5

80
f (4)(�)

� n = 4:

Z x4

x0
f(x)dx =

2h

45
[7f(x0) + 32f(x1) + 12f(x2) + 32f(x3) + 7f(x4)]�

8h7

945
f (6)(�)

Similarly, open Newton-Cotes Formula can also be obtained, which does not include the
endpoints of [a; b] as nodes.

Theorem 4.3. (Open Newton-Cotes Formulas) Let x�1 = a; xn+1 = b, and xi =
x0 + ih with h = (b� a)=(n+ 2). If n is even and f 2 Cn+2[a; b], then

Z b

a
f(x)dx =

nX
i=0

aif(xi) +
hn+3f (n+2)(�)

(n+ 2)!

Z n+1

�1
t2(t� 1) � � � (t� n)dt

If n is odd and f 2 Cn+1[a; b], then

Z b

a
f(x)dx =

nX
i=0

aif(xi) +
hn+2f (n+1)(�)

(n+ 1)!

Z n+1

�1
t(t� 1) � � � (t� n)dt

� n = 0: Midpoint rule

Z x1

x
�1

f(x)dx = 2hf(x0) +
h3

3
f 00(�)

� n = 1: Z x2

x
�1

f(x)dx =
3h

2
[f(x0) + f(x1)] +

3h3

4
f 00(�)

� n = 2: Z x3

x
�1

f(x)dx =
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3
[2f(x0)� f(x1) + 2f(x2)] +

14h5
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� n = 3:
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x
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f(x)dx =
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Section 2. Composite Numerical Integration

As we have seen in the last chapter, high order interpolations may led to large errors
in the resulting approximations. For numerical integrations, we face the same problem.
High order quadrature rules may give inaccurate results due to the stability problem.
Similar to piecewise polynomial interpolations, we can also introduce piecewise lower
order quadrature formulas, which are called composite quadrature rules.

Suppose the interval [a; b] is divided into n subintervals, apply the Trapezoidal rule
in each of the subinterval we obtain

Theorem 4.5. (Composite Trapezoidal rule) Let f 2 C2[a; b], h = (b� a)=n, and
xj = a+ jh, j = 0; 1; � � � ; n. There exists a � 2 (a; b) such that

Z b

a
f(x)dx =

h

2

2
4f(a) + 2

n�1X
j=1

f(xj) + f(b)

3
5� b� a

12
h2f 00(�)

Similarly, if n is even, apply Simpson's rule on each consecutive pair of subinterval
we obtain

Theorem 4.4. (Composite Simpson's rule) Let f 2 C4[a; b], n be even, h =
(b� a)=n, and xj = a+ jh, j = 0; 1; � � � ; n. There exists a � 2 (a; b) such that

Z b

a
f(x)dx =

h

3

2
4f(a) + 2

(n=2)�1X
j=1

f(x2j) + 4
n=2X
j=1

f(x2j�1) + f(b)

3
5� b� a

180
h4f (4)(�)
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Section 3. Romberg Method

Romberg integration is a acceleration technique to increase the convergence speed.
Romberg integration uses the Composite Trapezoidal rule to give preliminary approxi-
mations and then applies the Richardson extrapolation process to improve the approx-
imation. Let mn = 2n�1; n = 1; 2; 3; � � �, and let hk = (b � a)=mk. Use the Composite
Trapezoidal rule we have

Z b

a
f(x)dx =

hk

2

2
4f(a) + f(b) + 2

2k�1�1X
i=1

f(a+ ihk)

3
5� (b� a)

12
h2kf

00(�k)

Introduce the notations

R1;1 =
h1
2
[f(a) + f(b)] =

(b� a)

2
[f(a) + f(b)]

R2;1 =
h2
2
[f(a) + f(b) + 2f(a+ h2)]

=
(b� a)

4

"
f(a) + f(b) + 2f

 
a+

b� a

2

!#

=
1

2
[R1;1 + h1f(a+ h2)]

R3;1 =
1

2
[R2;1 + h2(f(a+ h3) + f(a+ 3h3))]

and in general

Rk;1 =
1

2

2
4Rk�1;1 + hk�1

2k�2X
i=1

f(a+ (2i� 1)hk)

3
5

Suppose f 2 C1[a; b], then the Composite Trapezoidal rule has the form

Z b

a
f(x)dx�Rk;1 =

1X
i=1

Kih
2i
k = K1h

2
k +

1X
i=2

Kih
2i
k

Then we have

Z b

a
f(x)dx�Rk+1;1 =

1X
i=1

Kih
2i
k+1 =

1X
i=2

Kih
2i
k

22i
=

K1h
2
k

4
+

1X
i=2

Kih
2i
k

4i

From these two equations we obtain

Z b

a
f(x)dx�

�
Rk+1;1 +

Rk+1;1 �Rk;1

3

�
=

1X
i=2

Ki

3

 
h2ik
4i�1

� h2ik

!

=
1X
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3

 
1� 4i�1

4i�1

!
h2ik

5



or Z b

a
f(x)dx�Rk+1;2 = �

K2

4
h4k +

1X
i=3

Ki

3

 
1� 4i�1

4i�1

!
h2ik

where

Rk+1;2 = Rk+1;1 +
Rk+1;1 �Rk;1

3

which gives the O(h4k) approximation. Similarly, using Rk;2 and Rk+1;2 we can obtain an
O(h6k) approximation, and so on. In general,

Rk;j = Rk;j�1 +
Rk;j�1 �Rk�1;j�1

4j�1 � 1
j = 2; 3; � � � ; n; k = j; j + 1; � � � ; n:

will give an O(h2jk�1) approximation. The process is given in the following table

Table 4.9
R1;1

R2;1 R2;2

R3;1 R3;2 R3;3

R4;1 R4;2 R4;3 R4;4
...

...
...

...
. . .

Rn;1 Rn;2 Rn;3 Rn;4 � � � Rn;n
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