Numerical Differentiation & Integration

Numerical Differentiation |

Numerical Analysis (9th Edition)
R L Burden & J D Faires

Beamer Presentation Slides
prepared by

John Carroll
Dublin City University

(© 2011 Brooks/Cole, Cengage Learning

Outline

0 Introduction to Numerical Differentiation

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 2/33

Outline

0 Introduction to Numerical Differentiation

e General Derivative Approximation Formulas

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 2/33

Outline

Q Introduction to Numerical Differentiation
e General Derivative Approximation Formulas

e Some useful three-point formulas

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 2/33

Introduction

Outline

0 Introduction to Numerical Differentiation

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 3/33

Introduction

Introduction to Numerical Differentiation

Approximating a Derivative

o
Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 4/33

Introduction

Introduction to Numerical Differentiation

@ The derivative of the function f at xg is

f(x0) = lim

f(xo +h) —f(x0)

h—0

Numerical Analysis (Chapter 4) Numerical Differentiation |

h

R L Burden & J D Faires

Approximating a Derivative

>
41733

Introduction

Introduction to Numerical Differentiation

Approximating a Derivative

@ The derivative of the function f at xg is

f/(XO) _ r![)no f(XO + hr)] — f(XO)‘

@ This formula gives an obvious way to generate an approximation
to f'(Xo); simply compute

f(xo +h) —f(xo0)
h

for small values of h. Although this may be obvious, it is not very
successful, due to our old nemesis round-off error.

o

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 4/33

Introduction

Introduction to Numerical Differentiation

Approximating a Derivative

@ The derivative of the function f at xg is

f/(XO) _ r![)no f(XO + hr)] — f(XO)‘

@ This formula gives an obvious way to generate an approximation
to f'(Xo); simply compute

f(xo +h) —f(xo0)
h

for small values of h. Although this may be obvious, it is not very
successful, due to our old nemesis round-off error.

@ Butit is certainly a place to start.

o

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 4/33

Introduction

Introduction to Numerical Differentiation

Approximating a Derivative (Cont'd)

@ To approximate f’(xg), suppose first that Xy € (a,b), where
f € C?[a,b], and that x; = Xo + h for some h # 0 that is sufficiently
small to ensure that x; € [a, b].

o

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 5/33

Introduction

Introduction to Numerical Differentiation

Approximating a Derivative (Cont'd)

@ To approximate f’(xg), suppose first that Xy € (a,b), where
f € C?[a,b], and that x; = Xo + h for some h # 0 that is sufficiently
small to ensure that x; € [a, b].

@ We construct the first Lagrange polynomial Pg 1(x) for f
determined by Xxg and x,, with its error term:

f(x) = P, () + K XXXy

f(xo)(Xx =xo —h) f(xo+h)(X —%0) (X —Xo)(X —%o—h),,
7 : + R F/(6(x))

for some £(x) between xo and x;.

o

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 5/33

Introduction

Numerical Differentiation
f(xo)(x =Xo—h) f(xo+h)(X —Xo) (X —Xg)(X —Xo —h)

f(x) = — + < + 5 f(£(x))

Differentiating gives

f(xo +h) —f(xp) (X —Xo)(X — %o — h)
0 - o) | p, 0 - 0

fi(x) = f(£(x))

i

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 6/33

Introduction

Numerical Differentiation
f(xo)(x =Xo—h) f(xo+h)(X —Xo) (X —Xg)(X —Xo —h)

f(x) = — + < + 5 f(£(x))

Differentiating gives

fe+h) =f(xo) 5 [X=Xo)X =X =h)

iy = [Coth) D, D)
f(xo + htz i) 2 ;(0) ~ hf”(f(x))
+ (X - XO)(Xz_ X0 — h) Dx(f”(g(X)))

i

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 6/33

Introduction

Numerical Differentiation
f(xo)(x =Xo—h) f(xo+h)(X —Xo) (X —Xg)(X —Xo —h)

f(x) = — + < + 5 f(£(x))

Differentiating gives

fe+h) =f(xo) 5 [X=Xo)X =X =h)

iy = [Coth) D, D)
f(xo + htz i) 2 ;(0) ~ hf”(f(x))
+ (X - XO)(Xz_ X0 — h) Dx(f”(g(X)))

Deleting the terms involving £(x) gives

fI(X) ~ f(XO + hlz - f(XO)

i

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 6/33

Introduction

Numerical Differentiation

fI(X) ~ f(XO + hlz - f(XO)

ol

Approximating a Derivative (Cont'd)

@ One difficulty with this formula is that we have no information
about Dyf”(£(x)), so the truncation error cannot be estimated.

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 7133

Introduction

Numerical Differentiation

fI(X) ~ f(XO + hlz - f(XO)

ol

Approximating a Derivative (Cont'd)

@ One difficulty with this formula is that we have no information
about Dyf”(£(x)), so the truncation error cannot be estimated.

@ When x is xg, however, the coefficient of Dyf”(£(x)) is 0, and the
formula simplifies to

fI(Xo) — f(XO + hr)] — f(XO) o gf”(f)

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 7133

Introduction

Numerical Differentiation

Forward-Difference and Backward-Difference Formulae
@ For small values of h, the difference quotient

f(Xo +h) —f(xo)

~—

>0

can be used to approximate f’(xg) with an error bounded by
M|h|/2, where M is a bound on [f”(x)]| for x between x, and
Xo + h.

~—

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires

o

8/33

Introduction

Numerical Differentiation

Forward-Difference and Backward-Difference Formulae
@ For small values of h, the difference quotient

—f(xo0)

f(XO +h

~—

>0

can be used to approximate f’(xg) with an error bounded by
M|h|/2, where M is a bound on [f”(x)]| for x between x, and
Xo + h.

@ This formula is known as the forward-difference formula if h > 0
and the backward-difference formula if h < O.

~—

o

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 8/33

Introduction

Forward-Difference Formula to Approximate f/(xo)

Slope f"(xo)

flxo + h) = flxp)

Slope W

T T >
X

o
Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 9/33

Introduction

Numerical Differentiation

Example 1: f(x) = Inx

Use the forward-difference formula to approximate the derivative of
f(x) =Inx at xo = 1.8 using h = 0.1, h = 0.05, and h = 0.01, and
determine bounds for the approximation errors.

10/33

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires

Introduction

Numerical Differentiation

Example 1: f(x) = Inx

Use the forward-difference formula to approximate the derivative of
f(x) =Inx atxp = 1.8 using h = 0.1, h = 0.05, and h = 0.01, and
determine bounds for the approximation errors.

Solution (1/3)

The forward-difference formula

f(1.8 +h) —(1.8)
h

with h = 0.1

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 10/33

Introduction

Numerical Differentiation

Example 1: f(x) = Inx

Use the forward-difference formula to approximate the derivative of
f(x) =Inx atxp = 1.8 using h = 0.1, h = 0.05, and h = 0.01, and
determine bounds for the approximation errors.

Solution (1/3)

The forward-difference formula

f(1.8 +h) —(1.8)
h

with h = 0.1 gives

IN1.9-In1.8 0.64185389 — 0.58778667
0.1 N 0.1

= 0.5406722

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 10/33

Introduction

Numerical Differentiation: Example 1

Solution (2/3)

Because f”(x) = —1/x? and 1.8 < ¢ < 1.9, a bound for this
approximation error is

ht"(&)] _ Il _ 0.1

2 22 S 2187

= 0.0154321

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 11/33

Introduction

Numerical Differentiation: Example 1

Solution (2/3)

Because f”(x) = —1/x? and 1.8 < ¢ < 1.9, a bound for this
approximation error is

ht"(&)] _ Il _ 0.1

_ — 0.0154321
2 22 S 2187

The approximation and error bounds when h = 0.05 and h = 0.01 are
found in a similar manner and the results are shown in the following
table.

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 11/33

Introduction

Numerical Differentiation: Example 1

Solution (3/3): Tabulated Results

f(1.8+h) _f(18) |
h f(L8+h
(- I) h 2(1.8)2
0.1 064185389 05406722 0.0154321
0.05 061518564 0.5479795 0.0077160
0.01 059332685 0.5540180 0.0015432

Since f/(x) = 1/x The exact value of f’(1.8) is 0.555, and in this case
the error bounds are quite close to the true approximation error.

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 12/33

General Formulas

Outline

e General Derivative Approximation Formulas

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 13/33

General Formulas

General Derivative Approximation Formulas

Method of Construction

@ To obtain general derivative approximation formulas, suppose that
{Xo0,X1,-..,Xn} are (n + 1) distinct numbers in some interval | and
that f € C"*1(1).

@ From the interpolation error theorem we have

= 3 Lete) +)=o)

for some £(x) in |, where Ly (x) denotes the kth Lagrange
coefficient polynomial for f at Xg, Xy, ..., Xn.

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 14 /33

General Formulas

General Derivative Approximation Formulas

n

100 =3 r0wkat) + (o)

-

Method of Construction (Cont'd)

Differentiating this expression gives

100 = S 1000Li) + Dy | E=20 Bl o g
k=0 ’

R)

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 15/33

General Formulas

General Derivative Approximation Formulas

1) = 3 10 (x) + Dy K200 K220 o g
k=0 ’

(= an) +1()X' —X0)p, £+ D) ¢ (x))]

Method of Construction (Cont'd)

We again have a problem estimating the truncation error unless X is
one of the numbers ;.

+

o

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 16/33

General Formulas

General Derivative Approximation Formulas

f/(x) = Zf (X)Lk () + Dy [(X — Xé’z +1(,); — X”)] FF(¢(x))

' - ol =k, i (eo)

Method of Construction (Cont'd)

We again have a problem estimating the truncation error unless X is
one of the numbers x;. In this case, the term multiplying
Dy [f(™D)(£(x))] is 0, and the formula becomes

/ Zn / FF (%)) 1 II
(XJ) = f(Xk)Lk (XJ) (+ 1) (XJ Xk)
8

i

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 16/33

General Formulas

General Derivative Approximation Formulas

1) = 3 10 (x) + Dy K200 K220 o g
k=0 ’
(X —Xo) -+ (X —Xn)
(n+1)!

- o

Method of Construction (Cont'd)

We again have a problem estimating the truncation error unless X is
one of the numbers x;. In this case, the term multiplying
Dy [f(™D)(£(x))] is 0, and the formula becomes

+

D[f " (¢(x))]

n (n+1)) "
F05) = D FLk) + oot TT 0~
k=0 " k=0

k#i

which is called an (n + 1)-point formula to approximate f/(x;).

i

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 16/33

General Formulas

General Derivative Approximation Formulas

n (n+1) I
() = > F(xi)Li () + W [T06 —x0)
k=0 '

Comment on the (n + 1)-point formula

@ In general, using more evaluation points produces greater
accuracy, although the number of functional evaluations and
growth of round-off error discourages this somewhat.

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires

17/33

General Formulas

General Derivative Approximation Formulas

n (n+1) (¢ (x
#(x) = > Fxi)LL) +) G fl(;(,])) TTx —x)
k=0 ’

Comment on the (n + 1)-point formula
@ In general, using more evaluation points produces greater
accuracy, although the number of functional evaluations and
growth of round-off error discourages this somewhat.
@ The most common formulas are those involving three and five
evaluation points.

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires

17/33

General Formulas

General Derivative Approximation Formulas

n (n+1) . i
() = > F(xi)Li () + % 1106 =)
=0 =

Comment on the (n + 1)-point formula

@ In general, using more evaluation points produces greater
accuracy, although the number of functional evaluations and
growth of round-off error discourages this somewhat.

@ The most common formulas are those involving three and five
evaluation points.

We first derive some useful three-point formulas and consider aspects
of their errors.)

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 17/33

3-pt Formulas

Outline

e Some useful three-point formulas

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 18/33

3-pt Formulas

Some useful three-point formulas

Important Building Blocks

Since
(X = x1)(X —x2)

== (Xo — X1)(Xo — X2)

o

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 19/33

3-pt Formulas

Some useful three-point formulas

Important Building Blocks

Since
L (X) _ (X - Xl)(x - XZ)
° (Xo — X1)(Xo — X2)
we obtain 5
X — X1 — X
Lo(x) = T

(Xo — X1)(Xo — X2)

o

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 19/33

3-pt Formulas

Some useful three-point formulas

Important Building Blocks

Since
L (X) _ (X - Xl)(x - XZ)
° (Xo — X1)(Xo — X2)
we obtain 5
X — X1 — X
Lo(x) = T

(Xo — X1)(Xo — X2)

In a similar way, we find that

2X — Xg — Xo
Li(x) =
1) (X1 — Xo)(X1 — X2)
2X — Xg — X1
Lo(x) =

(X2 —Xo)(X2 — X1)

o

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 19/33

3-pt Formulas

Some useful three-point formulas

Important Building Blocks (Cont’d)

Using these expressions for Lj’(x), 1 <j <2, the n+ 1-point formula

n (n+1) ! i
() =D F(xi)Li () + W [106 =)
k=0 '

_
Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 20/33

3-pt Formulas

Some useful three-point formulas

Important Building Blocks (Cont’d)

Using these expressions for Lj’(x), 1 <j <2, the n+ 1-point formula

n (n+1) ! i
() =D F(xi)Li () + W [106 =)
k=0 '

becomes for n = 2:

fx) = f(x0) [

2X; — X1 — X2 2X; — Xg — X2
(Xo — X1)(Xo — Xz)] ea) [(Xl —Xo)(X1 — Xz)}

79w L@ ey TTix
1) |+ (6 T105 — %)

k#

foreachj =0,1,2, where § = §(x).

v,
Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 20/33

3-pt Formulas

Some useful three-point formulas

f(x) = f(xO)[(2~ X]“(Xl)[(e }

Xo — Xl)(XO = X2) X1 — XO)(Xl = Xz)

2% — Xg — 2
o) [(Xz é Xo)X(ci(z —Xl)(l)} - }f(3)(£j) H(Xj — %)

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 21/33

3-pt Formulas

Some useful three-point formulas

f(x) = f(xO)[(2~ X]“(Xl)[(e }

Xo — Xl)(XO = X2) X1 — XO)(Xl = Xz)

2% — Xg — X1 1 2
+ f(x [) }+—f(3) : Xi — X
(2) (X2 — Xo)(X2 — Xl) 6 (5]) kl:[o(| k)
. k7] o

The 3-point formulas become especially useful if the nodes are equally
spaced, that is, when

X1 =Xg+h and X, =xg+2h, forsomeh #0

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 21/33

3-pt Formulas

Some useful three-point formulas

2Xj — X1 — X2
(Xo — X1)(Xo — X2)

5) = f0a)| [+10u) |

2Xj — Xg — X2 }

X1 — Xo)(X1 — X2)
2

EGRO)ICEES

k=0
ki

2Xj — Xp — X1
(X2 — Xo)(X2 — X1)

+umﬂ

Assumption

| \

The 3-point formulas become especially useful if the nodes are equally
spaced, that is, when

X1 =Xg+h and X, =xg+2h, forsomeh #0

We will assume equally-spaced nodes throughout the remainder of
this section.

o

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 21/33

3-pt Formulas

Some useful three-point formulas

s) =t

2Xj — X1 — X2] [2Xj — Xg — X2 }
+ f(x
Xo — Xl)(XO = X2) (1) (Xl = XO)(Xl = Xz)
2Xj — Xg — X1 } 1 ' 2
(X2 — Xo)(X2 — X1)

+il) |

Three-Point Formulas (1/3)

With x; = Xp, X1 = Xo + h, and X = Xg + 2h, the general 3-point formula
becomes

L

2
/(0) = 1 |~ 21(x0) + 28(x2) — 51x2)| + 21O (&o)

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 22/33

3-pt Formulas

Some useful three-point formulas

2Xj — X1 — X2
(Xo — X1)(Xo — X2)

2X; — Xg — X1 1 2
Hil) [GRANICERN

k#i

f5) = T | 100 |

2Xj — Xg — X2]
(X1 — Xo)(X1 — X2)

-

Three-Point Formulas (2/3)

Doing the same for x; = x; gives

f'(x) = % [_%f(XO) + %f(XZ)] N %Zf(g)(fl)

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 23/33

3-pt Formulas

Some useful three-point formulas

2Xj — X1 — X2
(Xo — X1)(Xo — X2)

2X; — Xg — X1 1 2
Hil) [GRANICERN

k#i

f5) = T | 100 |

2Xj — Xg — X2]
(X1 — Xo)(X1 — X2)

-

Three-Point Formulas (3/3)

... and for x; = X, we obtain

/() = = Ef(xO) —2f(xa) + gf(m)] + o)

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 24/33

3-pt Formulas

Some useful three-point formulas

Three-Point Formulas: Further Simplification

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 25/33

3-pt Formulas

Some useful three-point formulas

Three-Point Formulas: Further Simplification

Since X; = Xg + h and x, = Xg + 2h, these formulas can also be
expressed as

, 1[3 1 h®)
F(xo) = & | —5f(X0) +2f (X0 +h) — Sf(x0 + 2h) | + =F()
2 2 3
17 1 1 h2
F(xo+h) =+ _—Ef(xo) + 5 (%o + 2h)] — €f<3)(gl)
171 3 h?
F'(xo +2h) = & | 5f(x0) — 2f (xo + h) + Sf (%o + 2h)] +51(&)

o

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 25/33

3-pt Formulas

Some useful three-point formulas

Three-Point Formulas: Further Simplification

Since X; = Xg + h and x, = Xg + 2h, these formulas can also be
expressed as

, 1[3 1 h®)
F(xo) = & | —5f(X0) +2f (X0 +h) — Sf(x0 + 2h) | + =F()
| 2 2 3
171 1 h?
Flra) = 1 | ~50) + 100 + 20)] — 1Oe)
11 3 h?
F'(xo +2h) = & | 5f(x0) — 2f (xo + h) + Sf (%o + 2h)] +51(&)

o

As a matter of convenience, the variable substitution xqg for Xg + h is
used in the middle equation to change this formula to an approximation
for f’(Xp). A similar change, xq for xg + 2h, is used in the last equation.

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 25/33

3-pt Formulas

Some useful three-point formulas

Three-Point Formulas: Further Simplification (Cont’d)
This gives three formulas for approximating f'(xg):

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 26/33

3-pt Formulas

Some useful three-point formulas

Three-Point Formulas: Further Simplification (Cont’d)
This gives three formulas for approximating f'(xg):

f'(x0) = [3f(Xo) + 4f (xo +h) —f(xo +2h)] + —f(3 (€0)
f(x0) = 2—1,1[ff(xO)+ 100 +)] - T1O(), and

2
F'(X0) = o [f (X0 — 20) — 4 — h) + 3f(x0)] + T1(&)

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 26/33

3-pt Formulas

Some useful three-point formulas

Three-Point Formulas: Further Simplification (Cont’d)
This gives three formulas for approximating f'(xg):

f'(x0) = [3f(Xo) + 4f (xo +h) —f(xo +2h)] + —f(3 (€0)
f(x0) = 2—1,1[ff(xO)+ 100 +)] - T1O(), and

2
{/(x6) = o[— 20) — 41 (0 —) + 3(x0)] + 5 T(&)

Finally, note that the last of these equations can be obtained from the

first by simply replacing h with —h, so there are actually only two
formulas.

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 26/33

3-pt Formulas

Some useful three-point formulas

Three-Point Endpoint Formula

f'(xo) = [3f(Xo) + 4f (X0 + h) —f(Xo + 2h)] + —f(3 (6o0)

where &g lies between Xo and Xg + 2h.

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 27133

3-pt Formulas

Some useful three-point formulas

Three-Point Endpoint Formula

f'(xo) = [3f(Xo) + 4f (X0 + h) —f(Xo + 2h)] + —f(3 (6o0)

where &g lies between Xo and Xg + 2h.

Three-Point Midpoint Formula

¢ 1 h%_ (3
(Xo0) = %[f(xo +h) —f(xo —h)] - gf (¢1)

where ¢, lies between xg — h and xg + h.

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 27133

3-pt Formulas

Some useful three-point formulas

2
(1) Flo) = ol-3(k) + 4(r0 +) — F(0-+ 20)] + oFO) (g

, 1 h? 3)
(2) f(xo) = ﬁ[f(XoJrh)—f(Xo—h)]—gf (61)

Comments

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 28/33

3-pt Formulas

Some useful three-point formulas

2
(1) Flo) = ol-3(k) + 4(r0 +) — F(0-+ 20)] + oFO) (g

, 1 h? 3)
(2) f(xo) = ﬁ[f(XoJrh)—f(Xo—h)]—gf (61)

Comments

@ Although the errors in both Eq. (1) and Eq. (2) are O(h?), the error
in EqQ. (2) is approximately half the error in Eqg. (1).

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 28/33

3-pt Formulas

Some useful three-point formulas

2
(1) Flo) = ol-3(k) + 4(r0 +) — F(0-+ 20)] + oFO) (g

, 1 h? 3)
(2) f(xo) = ﬁ[f(XoJrh)—f(Xo—h)]—gf (61)

Comments

@ Although the errors in both Eq. (1) and Eq. (2) are O(h?), the error
in EqQ. (2) is approximately half the error in Eqg. (1).

@ This is because Eq. (2) uses data on both sides of xg and Eq. (1)
uses data on only one side.

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 28/33

3-pt Formulas

Some useful three-point formulas

2
(1) Flo) = ol-3(k) + 4(r0 +) — F(0-+ 20)] + oFO) (g

, 1 h? 3)
(2) f(xo) = ﬁ[f(XoJrh)—f(Xo—h)]—gf (61)

Comments

@ Although the errors in both Eq. (1) and Eq. (2) are O(h?), the error
in EqQ. (2) is approximately half the error in Eqg. (1).

@ This is because Eq. (2) uses data on both sides of xg and Eq. (1)
uses data on only one side.

@ Note also that f needs to be evaluated at only two points in
Eq. (2), whereas in Eq. (1) three evaluations are needed.

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 28/33

3-pt Formulas

Three-Point Midpoint Formula

h2

1
f(X0) = =[f(xo + h) — f(xo — h)] — —f©
(Xo) 2h[(0+) (Xo —h)] 6 (€1)
where ¢, lies between xg — h and xg + h.
Y'Y
Slope f"(xo)
Stope 5.~z +) = fxy =)]
xoill ;0 inLh fc

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 29/33

3-pt Formulas

Examples of five-point formulas

Five-Point Midpoint Formula

H(x) — %[f(xo—2h)—8f(xo—h)+8f(xo+h)—f(xo+2h)]

h*)
+%f (€)

where ¢ lies between xg — 2h and xg + 2h.

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 30/33

3-pt Formulas

Examples of five-point formulas

Five-Point Midpoint Formula

H(x) — éh [f (X0 — 2h) — 8f(Xo — h) + 8f (xo + h) — f(Xo + 2h)]

h4
(5)
357

where ¢ lies between xg — 2h and xg + 2h.

1
| A\

Five-Point Endpomt Formula

f/(Xo) [25f (Xo) + 48f (XQ + h) 36f (XQ + 2h)

12h
4
+ 16f(xg + 3h) — 3f(xg + 4h)] + h f®)(¢)

where ¢ lies between xg and Xg + 4h.

o

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 30/33

Questions?

Reference Material

The Lagrange Polynomial: Theoretical Error Bound

Suppose Xg, X1, . . . , Xn are distinct numbers in the interval [a, b] and
f € C"1[a, b]. Then, for each x in [a, b], a number £(x) (generally
unknown) between Xg, X1, . .., Xn, @nd hence in (a, b), exists with

FD(E(x))

f0) =P+ 3y

(X =X0)(X = X1) - (X — Xn)

where P(x) is the interpolating polynomial given by

P(x) =f(Xo)Lno(X) + -+ + f(Xn)Lnn(x) = Zf(xk)l—n,k(x)
k=0

	Introduction to Numerical Differentiation
	General Derivative Approximation Formulas
	Some useful three-point formulas

