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Introduction

Introduction to Numerical Differentiation

@ The derivative of the function f at xg is

f(x0) = lim

f(xo +h) —f(x0)

h—0
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Introduction

Introduction to Numerical Differentiation

Approximating a Derivative

@ The derivative of the function f at xg is

f/(XO) _ r![)no f(XO + hr)] — f(XO)‘

@ This formula gives an obvious way to generate an approximation
to f'(Xo); simply compute

f(xo +h) —f(xo0)
h

for small values of h. Although this may be obvious, it is not very
successful, due to our old nemesis round-off error.

o
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Introduction to Numerical Differentiation

Approximating a Derivative

@ The derivative of the function f at xg is

f/(XO) _ r![)no f(XO + hr)] — f(XO)‘

@ This formula gives an obvious way to generate an approximation
to f'(Xo); simply compute

f(xo +h) —f(xo0)
h

for small values of h. Although this may be obvious, it is not very
successful, due to our old nemesis round-off error.

@ Butit is certainly a place to start.

o
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Introduction

Introduction to Numerical Differentiation

Approximating a Derivative (Cont'd)

@ To approximate f’(xg), suppose first that Xy € (a,b), where
f € C?[a,b], and that x; = Xo + h for some h # 0 that is sufficiently
small to ensure that x; € [a, b].

o
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Introduction

Introduction to Numerical Differentiation

Approximating a Derivative (Cont'd)

@ To approximate f’(xg), suppose first that Xy € (a,b), where
f € C?[a,b], and that x; = Xo + h for some h # 0 that is sufficiently
small to ensure that x; € [a, b].

@ We construct the first Lagrange polynomial Pg 1(x) for f
determined by Xxg and x,, with its error term:

f(x) = P, () + K XXXy

f(xo)(Xx =xo —h) f(xo+h)(X —%0) (X —Xo)(X —%o—h),,
7 : + R F/(6(x))

for some £(x) between xo and x;.

o

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 5/33



Introduction

Numerical Differentiation
f(xo)(x =Xo—h) f(xo+h)(X —Xo) (X —Xg)(X —Xo —h)

f(x) = — + < + 5 f(£(x))

Differentiating gives

f(xo +h) —f(xp) (X —Xo)(X — %o — h)
0 - o) | p, 0 - 0

fi(x) = f(£(x))

i
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Introduction

Numerical Differentiation
f(xo)(x =Xo—h) f(xo+h)(X —Xo) (X —Xg)(X —Xo —h)

f(x) = — + < + 5 f(£(x))

Differentiating gives

fe+h) =f(xo) 5 [X=Xo)X =X =h)

iy = [Coth) D, D)
f(xo + htz i) 2 ;(0) ~ hf”(f(x))
+ (X - XO)(Xz_ X0 — h) Dx(f”(g(X)))

i
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Introduction

Numerical Differentiation
f(xo)(x =Xo—h) f(xo+h)(X —Xo) (X —Xg)(X —Xo —h)

f(x) = — + < + 5 f(£(x))

Differentiating gives

fe+h) =f(xo) 5 [X=Xo)X =X =h)

iy = [Coth) D, D)
f(xo + htz i) 2 ;(0) ~ hf”(f(x))
+ (X - XO)(Xz_ X0 — h) Dx(f”(g(X)))

Deleting the terms involving £(x) gives

fI(X) ~ f(XO + hlz - f(XO)

i
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Introduction

Numerical Differentiation

fI(X) ~ f(XO + hlz - f(XO)

ol

Approximating a Derivative (Cont'd)

@ One difficulty with this formula is that we have no information
about Dyf”(£(x)), so the truncation error cannot be estimated.
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Introduction

Numerical Differentiation

fI(X) ~ f(XO + hlz - f(XO)

ol

Approximating a Derivative (Cont'd)

@ One difficulty with this formula is that we have no information
about Dyf”(£(x)), so the truncation error cannot be estimated.

@ When x is xg, however, the coefficient of Dyf”(£(x)) is 0, and the
formula simplifies to

fI(Xo) — f(XO + hr)] — f(XO) o gf”(f)
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Introduction

Numerical Differentiation

Forward-Difference and Backward-Difference Formulae
@ For small values of h, the difference quotient

f(Xo +h) —f(xo)

~—

>0

can be used to approximate f’(xg) with an error bounded by
M|h|/2, where M is a bound on [f”(x)]| for x between x, and
Xo + h.

~—
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Introduction

Numerical Differentiation

Forward-Difference and Backward-Difference Formulae
@ For small values of h, the difference quotient

—f(xo0)

f(XO +h

~—

>0

can be used to approximate f’(xg) with an error bounded by
M|h|/2, where M is a bound on [f”(x)]| for x between x, and
Xo + h.

@ This formula is known as the forward-difference formula if h > 0
and the backward-difference formula if h < O.

~—

o
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Introduction

Forward-Difference Formula to Approximate f/(xo)

Slope f"(xo)

flxo + h) = flxp)

Slope W

T T >
X

o
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Introduction

Numerical Differentiation

Example 1: f(x) = Inx

Use the forward-difference formula to approximate the derivative of
f(x) =Inx at xo = 1.8 using h = 0.1, h = 0.05, and h = 0.01, and
determine bounds for the approximation errors.

10/33
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Introduction

Numerical Differentiation

Example 1: f(x) = Inx

Use the forward-difference formula to approximate the derivative of
f(x) =Inx atxp = 1.8 using h = 0.1, h = 0.05, and h = 0.01, and
determine bounds for the approximation errors.

Solution (1/3)

The forward-difference formula

f(1.8 +h) —(1.8)
h

with h = 0.1
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Introduction

Numerical Differentiation

Example 1: f(x) = Inx

Use the forward-difference formula to approximate the derivative of
f(x) =Inx atxp = 1.8 using h = 0.1, h = 0.05, and h = 0.01, and
determine bounds for the approximation errors.

Solution (1/3)

The forward-difference formula

f(1.8 +h) —(1.8)
h

with h = 0.1 gives

IN1.9-In1.8 0.64185389 — 0.58778667
0.1 N 0.1

= 0.5406722
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Introduction

Numerical Differentiation: Example 1

Solution (2/3)

Because f”(x) = —1/x? and 1.8 < ¢ < 1.9, a bound for this
approximation error is

ht"(&)] _ Il _ 0.1

2 22 S 2187

= 0.0154321
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Introduction

Numerical Differentiation: Example 1

Solution (2/3)

Because f”(x) = —1/x? and 1.8 < ¢ < 1.9, a bound for this
approximation error is

ht"(&)] _ Il _ 0.1

_ — 0.0154321
2 22 S 2187

The approximation and error bounds when h = 0.05 and h = 0.01 are
found in a similar manner and the results are shown in the following
table.
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Introduction

Numerical Differentiation: Example 1

Solution (3/3): Tabulated Results

f(1.8+h) _f(18) |
h  f(L8+h
(- I) h 2(1.8)2
0.1 064185389 05406722  0.0154321
0.05 061518564  0.5479795  0.0077160
0.01 059332685  0.5540180  0.0015432

Since f/(x) = 1/x The exact value of f’(1.8) is 0.555, and in this case
the error bounds are quite close to the true approximation error.
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e General Derivative Approximation Formulas
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General Formulas

General Derivative Approximation Formulas

Method of Construction

@ To obtain general derivative approximation formulas, suppose that
{Xo0,X1,-..,Xn} are (n + 1) distinct numbers in some interval | and
that f € C"*1(1).

@ From the interpolation error theorem we have

= 3 Lete) + )=o)

for some £(x) in |, where Ly (x) denotes the kth Lagrange
coefficient polynomial for f at Xg, Xy, ..., Xn.
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General Formulas

General Derivative Approximation Formulas

n

100 =3 r0wkat) + (o)

-

Method of Construction (Cont'd)

Differentiating this expression gives

100 = S 1000Li) + Dy | E=20 Bl o g
k=0 ’

R )
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General Formulas

General Derivative Approximation Formulas

1) = 3 10 (x) + Dy K200 K220 o g
k=0 ’

(= an) +1()X' —X0)p, £+ D) ¢ (x))]

Method of Construction (Cont'd)

We again have a problem estimating the truncation error unless X is
one of the numbers ;.

+

o
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General Formulas

General Derivative Approximation Formulas

f/(x) = Zf (X )Lk () + Dy [(X — Xé’z +1(,); — X”)] FF(¢(x))

' - ol =k, i (eo)

Method of Construction (Cont'd)

We again have a problem estimating the truncation error unless X is
one of the numbers x;. In this case, the term multiplying
Dy [f(™D)(£(x))] is 0, and the formula becomes

/ Zn / FF (%)) 1 II
(XJ) = f(Xk)Lk (XJ) ( + 1) (XJ Xk)
8

i
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General Formulas

General Derivative Approximation Formulas

1) = 3 10 (x) + Dy K200 K220 o g
k=0 ’
(X —Xo) -+ (X —Xn)
(n+1)!

- o

Method of Construction (Cont'd)

We again have a problem estimating the truncation error unless X is
one of the numbers x;. In this case, the term multiplying
Dy [f(™D)(£(x))] is 0, and the formula becomes

+

D[f " (¢(x))]

n (n+1) ) "
F05) = D FLk ) + oot TT 0~
k=0 " k=0

k#i

which is called an (n + 1)-point formula to approximate f/(x;).

i
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General Formulas

General Derivative Approximation Formulas

n (n+1) I
() = > F(xi)Li () + W [T06 —x0)
k=0 '

Comment on the (n + 1)-point formula

@ In general, using more evaluation points produces greater
accuracy, although the number of functional evaluations and
growth of round-off error discourages this somewhat.
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General Formulas

General Derivative Approximation Formulas

n (n+1) (¢ (x
#(x) = > Fxi )LL) + ) G fl(;(,])) TTx —x)
k=0 ’

Comment on the (n + 1)-point formula
@ In general, using more evaluation points produces greater
accuracy, although the number of functional evaluations and
growth of round-off error discourages this somewhat.
@ The most common formulas are those involving three and five
evaluation points.
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General Formulas

General Derivative Approximation Formulas

n (n+1) . i
() = > F(xi)Li () + % 1106 =)
=0 =

Comment on the (n + 1)-point formula

@ In general, using more evaluation points produces greater
accuracy, although the number of functional evaluations and
growth of round-off error discourages this somewhat.

@ The most common formulas are those involving three and five
evaluation points.

We first derive some useful three-point formulas and consider aspects
of their errors. )
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3-pt Formulas

Some useful three-point formulas

Important Building Blocks

Since
(X = x1)(X —x2)

== (Xo — X1)(Xo — X2)

o
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3-pt Formulas

Some useful three-point formulas

Important Building Blocks

Since
L (X) _ (X - Xl)(x - XZ)
° (Xo — X1)(Xo — X2)
we obtain 5
X — X1 — X
Lo(x) = T

(Xo — X1)(Xo — X2)

o
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3-pt Formulas

Some useful three-point formulas

Important Building Blocks

Since
L (X) _ (X - Xl)(x - XZ)
° (Xo — X1)(Xo — X2)
we obtain 5
X — X1 — X
Lo(x) = T

(Xo — X1)(Xo — X2)

In a similar way, we find that

2X — Xg — Xo
Li(x) =
1) (X1 — Xo)(X1 — X2)
2X — Xg — X1
Lo(x) =

(X2 —Xo)(X2 — X1)

o
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3-pt Formulas

Some useful three-point formulas

Important Building Blocks (Cont’d)

Using these expressions for Lj’(x), 1 <j <2, the n+ 1-point formula

n (n+1) ! i
() =D F(xi)Li () + W [106 =)
k=0 '

_
Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 20/33



3-pt Formulas

Some useful three-point formulas

Important Building Blocks (Cont’d)

Using these expressions for Lj’(x), 1 <j <2, the n+ 1-point formula

n (n+1) ! i
() =D F(xi)Li () + W [106 =)
k=0 '

becomes for n = 2:

fx) = f(x0) [

2X; — X1 — X2 2X; — Xg — X2
(Xo — X1)(Xo — Xz)] ea) [(Xl —Xo)(X1 — Xz)}

79w L@ ey TTix
1) |+ (6 T105 — %)

k#

foreachj =0,1,2, where § = §(x).

v,
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3-pt Formulas

Some useful three-point formulas

f(x) = f(xO)[( 2~ X ]“(Xl)[( e }

Xo — Xl)(XO = X2) X1 — XO)(Xl = Xz)

2% — Xg — 2
o) [(Xz é Xo)X(ci(z —Xl)(l)} - }f(3)(£j) H(Xj — %)

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 21/33



3-pt Formulas

Some useful three-point formulas

f(x) = f(xO)[( 2~ X ]“(Xl)[( e }

Xo — Xl)(XO = X2) X1 — XO)(Xl = Xz)

2% — Xg — X1 1 2
+ f(x [ ) }+—f(3) : Xi — X
( 2) (X2 — Xo)(X2 — Xl) 6 (5]) kl:[o( | k)
. k7] o

The 3-point formulas become especially useful if the nodes are equally
spaced, that is, when

X1 =Xg+h and X, =xg+2h, forsomeh #0
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3-pt Formulas

Some useful three-point formulas

2Xj — X1 — X2
(Xo — X1)(Xo — X2)

5) = f0a)| [ +10u) |

2Xj — Xg — X2 }

X1 — Xo)(X1 — X2)
2

EGRO)ICEES

k=0
ki

2Xj — Xp — X1
(X2 — Xo)(X2 — X1)

+umﬂ

Assumption

| \

The 3-point formulas become especially useful if the nodes are equally
spaced, that is, when

X1 =Xg+h and X, =xg+2h, forsomeh #0

We will assume equally-spaced nodes throughout the remainder of
this section.

o
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3-pt Formulas

Some useful three-point formulas

s) =t

2Xj — X1 — X2 ] [ 2Xj — Xg — X2 }
+ f(x
Xo — Xl)(XO = X2) ( 1) (Xl = XO)(Xl = Xz)
2Xj — Xg — X1 } 1 ' 2
(X2 — Xo)(X2 — X1)

+il) |

Three-Point Formulas (1/3)

With x; = Xp, X1 = Xo + h, and X = Xg + 2h, the general 3-point formula
becomes

L

2
/(0) = 1 |~ 21(x0) + 28(x2) — 51x2)| + 21O (&o)
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3-pt Formulas

Some useful three-point formulas

2Xj — X1 — X2
(Xo — X1)(Xo — X2)

2X; — Xg — X1 1 2
Hil) [ GRANICERN

k#i

f5) = T | 100 |

2Xj — Xg — X2 ]
(X1 — Xo)(X1 — X2)

-

Three-Point Formulas (2/3)

Doing the same for x; = x; gives

f'(x) = % [_%f(XO) + %f(XZ)] N %Zf(g)(fl)
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3-pt Formulas

Some useful three-point formulas

2Xj — X1 — X2
(Xo — X1)(Xo — X2)

2X; — Xg — X1 1 2
Hil) [ GRANICERN

k#i

f5) = T | 100 |

2Xj — Xg — X2 ]
(X1 — Xo)(X1 — X2)

-

Three-Point Formulas (3/3)

... and for x; = X, we obtain

/() = = Ef(xO) —2f(xa) + gf(m)] + o)
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3-pt Formulas

Some useful three-point formulas

Three-Point Formulas: Further Simplification
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3-pt Formulas

Some useful three-point formulas

Three-Point Formulas: Further Simplification

Since X; = Xg + h and x, = Xg + 2h, these formulas can also be
expressed as

, 1[ 3 1 h® )
F(xo) = & | —5f(X0) +2f (X0 +h) — Sf(x0 + 2h) | + =F()
2 2 3
17 1 1 h2
F(xo+h) =+ _—Ef(xo) + 5 (%o + 2h)] — €f<3)(gl)
171 3 h?
F'(xo +2h) = & | 5f(x0) — 2f (xo + h) + Sf (%o + 2h)] +51(&)

o
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3-pt Formulas

Some useful three-point formulas

Three-Point Formulas: Further Simplification

Since X; = Xg + h and x, = Xg + 2h, these formulas can also be
expressed as

, 1[ 3 1 h® )
F(xo) = & | —5f(X0) +2f (X0 +h) — Sf(x0 + 2h) | + =F()
| 2 2 3
171 1 h?
Flra ) = 1 | ~50) + 100 + 20)] — 1Oe)
11 3 h?
F'(xo +2h) = & | 5f(x0) — 2f (xo + h) + Sf (%o + 2h)] +51(&)

o

As a matter of convenience, the variable substitution xqg for Xg + h is
used in the middle equation to change this formula to an approximation
for f’(Xp). A similar change, xq for xg + 2h, is used in the last equation.
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3-pt Formulas

Some useful three-point formulas

Three-Point Formulas: Further Simplification (Cont’d)
This gives three formulas for approximating f'(xg):

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 26/33



3-pt Formulas

Some useful three-point formulas

Three-Point Formulas: Further Simplification (Cont’d)
This gives three formulas for approximating f'(xg):

f'(x0) = [ 3f(Xo) + 4f (xo +h) —f(xo +2h)] + —f(3 (€0)
f(x0) = 2—1,1[ff(xO )+ 100 + )] - T1O(),  and

2
F'(X0) = o [f (X0 — 20) — 4 — h) + 3f(x0)] + T1(&)
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3-pt Formulas

Some useful three-point formulas

Three-Point Formulas: Further Simplification (Cont’d)
This gives three formulas for approximating f'(xg):

f'(x0) = [ 3f(Xo) + 4f (xo +h) —f(xo +2h)] + —f(3 (€0)
f(x0) = 2—1,1[ff(xO )+ 100 + )] - T1O(),  and

2
{/(x6) = o[ — 20) — 41 (0 — ) + 3(x0)] + 5 T(&)

Finally, note that the last of these equations can be obtained from the

first by simply replacing h with —h, so there are actually only two
formulas.
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3-pt Formulas

Some useful three-point formulas

Three-Point Endpoint Formula

f'(xo) = [ 3f(Xo) + 4f (X0 + h) —f(Xo + 2h)] + —f(3 (6o0)

where &g lies between Xo and Xg + 2h.
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3-pt Formulas

Some useful three-point formulas

Three-Point Endpoint Formula

f'(xo) = [ 3f(Xo) + 4f (X0 + h) —f(Xo + 2h)] + —f(3 (6o0)

where &g lies between Xo and Xg + 2h.

Three-Point Midpoint Formula

¢ 1 h%_ (3
(Xo0) = %[f(xo +h) —f(xo —h)] - gf (¢1)

where ¢, lies between xg — h and xg + h.
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3-pt Formulas

Some useful three-point formulas

2
(1) Flo) = ol-3(k) + 4(r0 + ) — F(0-+ 20)] + oFO) (g

, 1 h? 3)
(2) f(xo) = ﬁ[f(XoJrh)—f(Xo—h)]—gf (61)

Comments
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3-pt Formulas

Some useful three-point formulas

2
(1) Flo) = ol-3(k) + 4(r0 + ) — F(0-+ 20)] + oFO) (g

, 1 h? 3)
(2) f(xo) = ﬁ[f(XoJrh)—f(Xo—h)]—gf (61)

Comments

@ Although the errors in both Eq. (1) and Eq. (2) are O(h?), the error
in EqQ. (2) is approximately half the error in Eqg. (1).
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3-pt Formulas

Some useful three-point formulas

2
(1) Flo) = ol-3(k) + 4(r0 + ) — F(0-+ 20)] + oFO) (g

, 1 h? 3)
(2) f(xo) = ﬁ[f(XoJrh)—f(Xo—h)]—gf (61)

Comments

@ Although the errors in both Eq. (1) and Eq. (2) are O(h?), the error
in EqQ. (2) is approximately half the error in Eqg. (1).

@ This is because Eq. (2) uses data on both sides of xg and Eq. (1)
uses data on only one side.
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3-pt Formulas

Some useful three-point formulas

2
(1) Flo) = ol-3(k) + 4(r0 + ) — F(0-+ 20)] + oFO) (g

, 1 h? 3)
(2) f(xo) = ﬁ[f(XoJrh)—f(Xo—h)]—gf (61)

Comments

@ Although the errors in both Eq. (1) and Eq. (2) are O(h?), the error
in EqQ. (2) is approximately half the error in Eqg. (1).

@ This is because Eq. (2) uses data on both sides of xg and Eq. (1)
uses data on only one side.

@ Note also that f needs to be evaluated at only two points in
Eq. (2), whereas in Eq. (1) three evaluations are needed.
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3-pt Formulas

Three-Point Midpoint Formula

h2

1
f(X0) = =[f(xo + h) — f(xo — h)] — —f©
(Xo) 2h[(0+) (Xo —h)] 6 (€1)
where ¢, lies between xg — h and xg + h.
Y'Y
Slope f"(xo)
Stope 5.~z + ) = fxy = )]
xoill ;0 inLh fc
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3-pt Formulas

Examples of five-point formulas

Five-Point Midpoint Formula

H(x) — %[f(xo—2h)—8f(xo—h)+8f(xo+h)—f(xo+2h)]

h* )
+%f (€)

where ¢ lies between xg — 2h and xg + 2h.
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3-pt Formulas

Examples of five-point formulas

Five-Point Midpoint Formula

H(x) — éh [f (X0 — 2h) — 8f(Xo — h) + 8f (xo + h) — f(Xo + 2h)]

h4
(5)
357

where ¢ lies between xg — 2h and xg + 2h.

1
| A\

Five-Point Endpomt Formula

f/(Xo) [ 25f (Xo) + 48f (XQ + h) 36f (XQ + 2h)

12h
4
+ 16f(xg + 3h) — 3f(xg + 4h)] + h f®)(¢)

where ¢ lies between xg and Xg + 4h.

o

Numerical Analysis (Chapter 4) Numerical Differentiation | R L Burden & J D Faires 30/33



Questions?



Reference Material



The Lagrange Polynomial: Theoretical Error Bound

Suppose Xg, X1, . . . , Xn are distinct numbers in the interval [a, b] and
f € C"1[a, b]. Then, for each x in [a, b], a number £(x) (generally
unknown) between Xg, X1, . .., Xn, @nd hence in (a, b), exists with

FD(E(x))

f0) =P+ 3y

(X =X0)(X = X1) - (X — Xn)

where P(x) is the interpolating polynomial given by

P(x) =f(Xo)Lno(X) + -+ + f(Xn)Lnn(x) = Zf(xk)l—n,k(x)
k=0
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