
Chapter 3. Interpolation

Section 1. Lagrange Interpolation

In many application problems, we need to use polynomials to approximate some
complicated or unknown functions, which usually are given in the form of discrete val-
ues, i.e., the function values are known only at given points. Lagrange interpolation
determines a polynomial of order n for a given set of n+ 1 points.

1. Linear interpolation. (Burden & Faires, 3.1)
If a set of two points, (x0; f(x0)), (x1; f(x1)), are given, we want to �nd a linear

polynomial (degree 1) which passes through these two points. Let

L0(x) =
x� x1
x0 � x1

; L1(x) =
x� x0
x1 � x0

and de�ne
P (x) = L0(x)f(x0) + L1(x)f(x1)

It is easy to check that P (x) is the required polynomial.

2. General case. (Burden & Faires, 3.1)
Similar to the linear case, we want to �nd a polynomial of degree n which passes

through n+ 1 points

(x0; f(x0)); (x1; f(x1)); � � � ; (xn; f(xn));

Let
Pn(x) = f(x0)Ln;0(x) + f(x1)Ln;1(x) + � � �+ f(xn)Ln;n(x)

where Ln;k(x); k = 0; 1; � � � ; n, are polynomials of degree n, which are to be determined.
Since

Pn(xk) = f(xk); k = 0; 1; � � � ; n

the polynomial Ln;k should satis�es the condition

Ln;k(xk) = 1; Ln;k(xi) = 0; i 6= k

Thus, Ln;k(x) contains the factor

(x� x0)(x� x1) � � � (x� xk�1)(x� xk+1) � � � (x� xn)

Use Ln;k(xk) = 1 we obtain

(x� x0) � � � (x� xk�1)(x� xk+1) � � � (x� xn)

(xk � x0) � � � (xk � xk�1)(xk � xk+1) � � � (xk � xn)



Theorem 3.3. (error term of Lagrange interpolation) Suppose that x0; x1; � � � ; xn

are distinct numbers in the interval [a; b] and f 2 Cn+1[a; b]. Then, for each x 2 [a; b],
there exists a number � 2 (a; b) shch that

f(x) = Pn(x) +
fn+1(�)

(n+ 1)!
(x� x0)(x� x1) � � � (x� xn)

Section 2. Hermite interpolation.

In the Lagrange interpolation, at each node, the polynomial has the same value as
the function value. However, in some applicaton problems, we may want the approxi-
mate polynomial has the same slope as the function. This results in a di�erent kind of
polynomial interpolation, the Hermite interpolation.

Theorem 3.9. (Hermite interpolation) If f 2 C1[a; b] and x0; x1; � � � ; xn 2 [a; b] are
distinct, the unique polynomial of least degree agreeing with f and f 0 at x0; x1; � � � ; xn

is the Hermite polynomial of degree at most 2n+ 1 given by

H2n+1(x) =
nX

j=0

f(xj)Hn;j(x) +
nX

j=0

f 0(xj)Ĥn;j(x)

where

Hn;j(x) = [1� 2(x� xj)L
0
n;j(xj)]L

2
n;j(x)

Ĥn;j(x) = (x� xj)L
2
n;j(x)

Moreover, if f 2 C2n+2[a; b], then

f(x) = H2n+1(x) +
(x� x0)

2 � � � (x� xn)
2

(2n+ 2)!
f (2n+2)(�)

for some � 2 (a; b).

Section 3. Piecewise polynomial interpolation.

For some problems, high order interpolation may not give satisfactory results. For
example (Runge), let

f(x) =
1

1 + x2
; �5 � x � 5

If we take xk = �5 + 10k=n; k = 0; 1; � � � ; n, then the resulting Lagrange interpolation
polynomial only converges for jxj � 3:63, as n ! 1. In this case, a piecewise interpo-
lation using low order polynomials would give much better results. The simplest one is
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the piecewise linear interpolation. Let

a = x0 < x1 < � � � < xn = b

we want to �nd the piecewise linear function of the form

I1(x) =
nX

k=0

f(xk)lk(x)

It is easy to see that lk(x) should be a piecewise linear function and satisfy the conditions

lk(xk) = 1; Lk(xi) = 0; i 6= k

Thus, lk(x) = 0 in all subintervals except the two subintervals [xk�1; xk] and [xk; xk+1],
i.e.,

lk(x) =

8>><
>>:

x�xk�1
xk�xk�1

; xk�1 � x � xk

x�xk+1
xk�xk+1

; xk � x � xk+1

0; x in other subintervals

Similarly, we can construct the piecewise quadratic interpolation I2(x).

Section 4. Splines

For the piecewise linear or piecewise quadratic interpolations, the function I1(x) or
I2(x) is continuous in the interval [a; b], but not smooth in general, i.e., I 01(x) or I

0
2(x)

is discontinuous at the nodes xk; k = 1; 2; � � �n � 1. If a smooth piecewise polynomial
is required, we need the spline interpolation. In the spline interpolations, the cubic
spline interpolation is the most polular one.

De�nition 3.10 (cubic spline interpolation) Given a function f de�ned on [a; b]
and a set of nodes a = x0 < x1 < � � � < xn = b, a cubic spline interpolation S for f is a
function that satis�es the following conditions,

(a) S(x) is a cubic polynomial, denoted Sj(x), on the subinterval [xj; xj+1] for each
j = 0; 1; � � � ; n� 1

(b) Sj(xj) = f(xj), and Sj(xj+1) = f(xj+1), for each j = 0; 1; � � � ; n� 1

(c) Sj+1(xj+1) = Sj(xj+1), for each j = 0; 1; � � � ; n� 2

(d) S 0j+1(xj+1) = S 0j(xj+1), for each j = 0; 1; � � � ; n� 2

(e) S 00j+1(xj+1) = S 00j (xj+1), for each j = 0; 1; � � � ; n� 2

(f) One of the following sets of boundary conditions is satis�ed
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(i) S 00(x0) = S 00(xn) = 0 (free or natural boundary)

(ii) S 0(x0) = f(x0) and S 0(xn) = f(xn) (clamped boundary)

Theorem 3.11. (existence and uniqueness of the natural spline) If f is de�ned
at a = x0 < x1 < � � � < xn = b, then f has a unique natural spline interpolant S on
the nodes x0; x1; � � � ; xn, i.e., a spline interpolant that satis�es the boundary condition
S 00(a) = S 00(b) = 0.

Theorem 3.12. (existence and uniqueness of the clamped spline) If f is de�ned
at a = x0 < x1 < � � � < xn = b, and di�erentiable at a and b, then f has a unique
clamped spline interpolant S on the nodes x0; x1; � � � ; xn, i.e., a spline interpolant that
satis�es the boundary condition S 0(a) = f 0(a) and S 0(b) = f 0(b).

Theorem 3.13. (error of the clamped spline) Let f 2 C4[a; b] with maxa�x�b jf
(4)(x)j =

M . If S is the unique clamped cubic spline interpolant to f with respect to the nodes
a = x0 < x1 < � � � < xn = b, then for all x 2 [a; b] we have

jf(x)� S(x)j �
5M

384
max

0�j�n�1
(xj+1 � xj)
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