Chapter 3. Interpolation

Section 1. Lagrange Interpolation

In many application problems, we need to use polynomials to approximate some
complicated or unknown functions, which usually are given in the form of discrete val-
ues, i.e., the function values are known only at given points. Lagrange interpolation
determines a polynomial of order n for a given set of n + 1 points.

1. Linear interpolation. (Burden & Faires, 3.1)
If a set of two points, (xg, f(z0)), (21, f(x1)), are given, we want to find a linear
polynomial (degree 1) which passes through these two points. Let
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and define
P(z) = Lo(w) f(zo) + Li(x) f (1)

It is easy to check that P(x) is the required polynomial.

2. General case. (Burden & Faires, 3.1)
Similar to the linear case, we want to find a polynomial of degree n which passes
through n 4 1 points

(@0, f(0)), (w1, f(1)), -+ (s [ (20)),

Let

Py (x) = f(x0) Lno(x) + f(21) Ly (@) + - + fzn) Lnp()
where Ly, ;(z),k=0,1,---,n, are polynomials of degree n, which are to be determined.
Since

P.(zg) = f(zx), k=0,1,---,n
the polynomial L, ; should satisfies the condition
Lyp(xr) =1, Lpg(z;) =0, i#k
Thus, L, ;(x) contains the factor
(# —zo)(x —21) -+ (2 — 2e1) (& — Tier) -+ (& — )
Use L, x(xr) =1 we obtain
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Theorem 3.3. (error term of Lagrange interpolation) Suppose that xg, z1,-- -, x,
are distinct numbers in the interval [a,b] and f € C™"'[a,b]. Then, for each z € [a,b],
there exists a number & € (a, b) shch that
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Section 2. Hermite interpolation.

In the Lagrange interpolation, at each node, the polynomial has the same value as
the function value. However, in some applicaton problems, we may want the approxi-
mate polynomial has the same slope as the function. This results in a different kind of
polynomial interpolation, the Hermite interpolation.

Theorem 3.9. (Hermite interpolation) If f € C'[a,b] and zg, z1,- -+, T, € [a,b] are
distinct, the unique polynomial of least degree agreeing with f and f’ at xg,x1,---,z,
is the Hermite polynomial of degree at most 2n + 1 given by
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where

Hns (2) = [1 = 2(x — z;) L, ;(2;)] Ly, ()

H,(z) = (z — ;) L;, ;(=)
Moreover, if f € C?""2[q, ], then

(x —x0)? -+ (. — 1)
(2n + 2)!

f(#) = Hoppr () + FErR(g)

for some £ € (a,b).

Section 3. Piecewise polynomial interpolation.

For some problems, high order interpolation may not give satisfactory results. For

example (Runge), let
1
Mo =1

If we take z, = =5+ 10k/n,k = 0,1,---,n, then the resulting Lagrange interpolation
polynomial only converges for |z| < 3.63, as n — oo. In this case, a piecewise interpo-
lation using low order polynomials would give much better results. The simplest one is

—5<zx<)H
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the piecewise linear interpolation. Let
a=To<x1 < - <xp,=0>

we want to find the piecewise linear function of the form

Ii(z) = 2”: f(ze)li(x)

k=0

It is easy to see that [ (z) should be a piecewise linear function and satisfy the conditions

Thus, {x(x) = 0 in all subintervals except the two subintervals [xy_1,zx] and [z, 2g11],
ie.,
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Similarly, we can construct the piecewise quadratic interpolation I5(x).

Section 4. Splines

For the piecewise linear or piecewise quadratic interpolations, the function I;(x) or
I5(x) is continuous in the interval [a, b], but not smooth in general, i.e., I7(z) or I}(x)
is discontinuous at the nodes xp, k = 1,2,---n — 1. If a smooth piecewise polynomial
is required, we need the spline interpolation. In the spline interpolations, the cubic
spline interpolation is the most polular one.

Definition 3.10 (cubic spline interpolation) Given a function f defined on [a, b]
and a set of nodes a = xg < 1 < --- < x, = b, a cubic spline interpolation S for f is a
function that satisfies the following conditions,

(a) S(z) is a cubic polynomial, denoted S;(z), on the subinterval [z;,2;11] for each
j=0,1,--,n—1

(b) Sj(x;) = f(x;), and S;(z;11) = f(xj41), for each j =0,1,---,n—1
(c) Sjsi1(xjs1) = Si(zjsq), for each j =0,1,---,n—2
(d) Siyi(wj11) = Si(wj41), for each j =0,1,--+,n —2
(e) S} (xj41) = Sj(x541), for each j =0,1,---,n —2

(f) One of the following sets of boundary conditions is satisfied



(i) S"(xp) = S"(x,) = 0 (free or natural boundary)
(ii) S'(zo) = f(x) and S'(z,) = f(z,) (clamped boundary)

Theorem 3.11. (existence and uniqueness of the natural spline) If f is defined
at a = x9 < 11 < -+ < x, = b, then f has a unique natural spline interpolant S on
the nodes xg, x1, -+, z,, i.e., a spline interpolant that satisfies the boundary condition

S"(a) = S"(b) = 0.

Theorem 3.12. (existence and uniqueness of the clamped spline) If f is defined
at a = 19 < 11 < -+ < x, = b, and differentiable at ¢ and b, then f has a unique
clamped spline interpolant S on the nodes xg,x1,- -, z,, i.e., a spline interpolant that
satisfies the boundary condition S’(a) = f'(a) and S’(b) = f'(b).

Theorem 3.13. (error of the clamped spline) Let f € C*[a, b] with max,<,<; | f ¥ (z)| =
M. 1If S is the unique clamped cubic spline interpolant to f with respect to the nodes
a=x9<x <--+ <z, =0, then for all z € [a, b] we have

M
|f(z) = S(z)] < 331 o<1?<a€{_1(xj+1 — ;)



