Chapter 2. Solution of a Single Nonlinear Equation

Section 1. Iteration Methods

1. Bisection method.(Burden & Faires, 2.1)
Consider the nonlinear equation

flz)=0, a<z<b

The bisection method is the most simplest method to find a root of f(z). Suppose f(x) is
a continuous function on [a, b], with f(a) and f(b) of opposite sign. By the Intermediate
Value Theorem, there exists a number p € (a,b) with f(p) = 0. For simplicity, we
assume that the root p is unique. The algorithm of the bisection method is as follows,

e Let a; = a and by = b, and let p; be the midpoint of [a4, b;],

bl—al_a1+b1
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p1=a;+

e If f(p1) =0, then p = p;. Otherwise, if f(p;) # 0, then f(p;) has the same sign
as either f(ay) or f(b;). When f(p;) and f(ay) has the same sign, p € (p1,b1),
and we set ay = pq1, and by = b;. When f(p;1) and f(a;) has the opposite sign,
p € (ay,p1), and we set as = a;, and by = p;. We then set py be the midpoint of
[CLQ, bg]

e This procedure is continued until the satisfactory approximation p, is obtained.

Theorem 2.1. (convergence of bisection method) Suppose that f € Cla,b] and
f(a) - f(b) < 0. The bisection method generates a sequence {p,}°2,; approximating a
zero p of f with
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Proof. For each n > 1, we have
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bn—an:FaHdPE(an,bn)
Since p,, = (an + b,)/2, then
| _|<bn—an_b—a .
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Using this theorem we can determine the number of iterations n for a given accuracy
€. Set
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Take logarithms we get
nlogyy2 > logy(b — a) — logyg €
or
> logy(b — a) —logyp€
B logy 2

For example, if a = 1, b = 2, and € = 1073, we have

0> log;y 1 — log;q 1073 S 3

~ 9.97
log,o 2 — 0.30103

2. Fixed point iteration.(Burden & Faires, 2.2)
A number p is called a fixed point for a given function g if g(p) = p.

Theorem 2.2.

a. If g € Cla,b] and g(z) € [a,b] for all x € [a, b], then g has a fixed point in [a, b].
b. If, in addition, ¢'(z) exists on (a,b) and a positive constant k < 1 exists with
|d'(x)| <k Vz € (a,b)

then the fixed point in [a, b] is unique.

Proof.

a. If g(a) = a or g(b) = b, then ¢ has a fixed point at an endpoint. If not, then g(a) > a
and ¢g(b) < b. The function h(z) = g(x) — z is continuous on [a, b] with

h(a) = g(a) —a > 0 and h(b) = g(b) —b < 0
The Intermediate Value Theorem implies that there exists p € (a,b) such that
h(p) =0, or g(p) = p.

b. If p and ¢, p # ¢, are both fixed points, then the Mean Value Theorem implies that
a number & exists between p and ¢ with

9(p) - g9(a) _ 4(6)
p—gq
Thus,
p—ql=19(p) — g(@)| = 9" () < klp—q| <Ip—ql

which is a contradiction. m



To approximate the fixed point p, we take an initial guess py, and compute p, =
g(Pn_1). The following theorem shows that the p, converges to p under some conditions.

Theorem 2.3. (fixed point iteration) Let g € C|a, b] be such that ¢g(z) € [a,b], for
all € [a,b]. Suppose, in addition, that ¢' exists on (a, b) and that a constant 0 < k£ < 1
exists with

ld'(x)| <k V€ (a,b)
Then, for any po € [a,b], the sequence defined by

Pn=9Pn1), n>1
converges to the unique fixed point p € [a, b].

Proof. Using the Mean Value Theorem we have

Pn = pl = |9(Pa-1) — 9(p)| = |9'(&) P — p| < klpn1 — pl
Applying this repeatedly we get

Ipn —p| =< klpn 1 —p| < k*pno—p| < -+ < k"|po — Dl

Therefore,
A [P —pl =0
Corollary 2.4. If g satisfies the hypotheses of Theorem 2.3, then the error is bounded
by
[pn — p| =< k" max{po — a,b — po}
and

kn
_ =<

Ipr —po|] n>1

3. Newton’s method.(Burden & Faires, 2.3)

Newton’s is a very efficient method for finding the roots of f(z) = 0. Newton’s
method can be derived by using Taylor’s theorem. Suppose that f € C?[a,b]. Let
Po € [a,b] be an good approximation to the root p such that f'(pg) # 0. Then we have

F0) = £} + 0= o) o) + Z2 2

Dropping the second order term and using f(p) = 0 we find a new approximation to p,

f(po)
f'(po)

pP=pL=Dpo—

In general, we have the iteration algorithm,

f(pn—l)
fl(pn—l)
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Pn = Pn-1— forn>1



Theorem 2.5. (local convergence of Newton’s method) Let f € C?[a,b], if
p € la,b] is such that f(p) = 0 and f'(p) # 0, then there exists a 6 > 0 such that
Newton’s method converges for any initial approximation py € [p — d,p + 4].

Proof. Let 1)
A== )

then Newton’s method is equivalent to the fixed point iteration p, = g(p,—1). Thus,
we only need to check the conditions in the convergence theorem for the fixed point
iteration. Take the derivative

f(@)f"(x)

!
9 (r) = S5
D= TFep
Since ¢'(p) = 0, there exists a § > 0, such that

ld(x)| <k<1 Vrep—0p+4]
Also, since

l9(z) = pl = |9(z) — g(p)| = ¢'()llz — p| < klz —p| < |z —p[ <o
g maps [p— d,p+ 0] into [p — 4, p + d]. Therefore, from the convergence theorem for the
fixed point iteration, Newton’s method converges to p for any pg € [p —,p+6]. =

Secant method. Newton’s method is a very powerful method. However, in some
application problems, f'(p,_1) is not easy to find. To avoid this difficulty, we use an
approximation to replace f'(p,_1)

f(pn—l) - f(pn—2)
Pn—1 — Pn—2

fl(pnfl) ~

Then Newton’s method is modified to

f(pnfl)(pnfl - pn72)
f(pnfl) - f(pnf2)

This method is called the Secant Method.

Pn =DPn-1—

Brent’s method. Brent’s method is a modification of the secant method, which com-
bines the bisection method and the secant method. At each step, if the new approxima-
tion from the secant method is not inside the new subinterval, then the new approxima-
tion is replaced by the bisection point, and the new subinterval is chosen to guarantee
that the root is inside.



Section 2. Convergence Analysis

Convergence order. If

i Po =Pl

n—00 ‘pn — p‘a
for some constant A, then we say that the sequence {p,}32, converges to p of order a.
When o = 1 (X < 1), the sequence is linearly convergent. When « = 2, the sequence is
quadratically convergent.

Theorem 2.7. Let g € Cla,b] be such that g(x) € [a,b], for all x € [a,b]. Suppose, in
addition, that ¢’ is continuous on (a, b) and

ld'(x)] <k V€ (a,b)
with k£ < 1. If ¢’(p) # 0, then for py € [a, b], the sequence

Pn = g(pn—l) Vn > 1

converges only linearly to the unique fixed point p € [a, b].
Proof. Since

Pat1 =0 =9g(Pn) — 9(p) = 9'(&) (P — p)
then

tim P2 (6 = 19 0)]

Theorem 2.8. Let p be a solution of the equation = g(x). Suppose that ¢’'(p) = 0 and
¢" is continuous with |¢”(x)| < M on an open interval I containing p. Then there exists
a number § > 0 such that, for pg € [p — 6, p + J], the sequence defined by p, = g(p,_1),
n > 1, converges at least quadratically to p. Moreover, for sufficiently large value of n,

M 2
|Pny1 — p| < 7|pn —p|

Proof. Using Taylor expansion we have

oe) = o)+ o))+ Ty
= p+ g";g) (2 —p)”
Let x = p,, we get
g"(£n)




or
9" (&)

5 (Pn — p)?

Pn+1 — P =

Thus, we have
iy ot =Pl _ 19"0)] _ M

— <
n—oo ’pn — p’2 2 2 u
For Newton’s method,
f(=)
glx)=x—
W=

It is easy to check that ¢'(p) = 0 and ¢” is continuous with |¢"(x)| < M. Thus, Newton’s
method converges quadratically.

Section 3. Zeros of Polynomials

There are different ways to find the zeros of polynomials, here we only introduce one
simple method, Bairstow’s Method. Consider the polynomial

aor” + a1z a4 +a,=0 (1)
The idea is to find a quadratic factor of the form
2 4 ux + v

where u and v are constants to be determined. Once this quadratic factor is obtained,
then the degree of the polynomial is reduced by 2, and we continue to find other quadratic
factors. In this way, we find all quadratic factors, and thus find all the roots. Let

apr" + a1 2"+ agx™ P 4t a, =

(22 + uz +v) (boz" % + bz + bgx™ P+ -+ 4+ b, 2) + R(2)

where
R(z)=rz+s

To ensure that z% + ux + v is a factor of the polynomial (1), the remainder R(x) must
be zero. Since r and s depend on u and v, we have

r(u,v) =0
s(u,v) =0

Suppose initial approximations ug and vy are given, let u; = ug+ Aug and v; = v+ Awvy.
We require

r(uq,v1) =

s(uy,v1) =
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or,

r(up + Aug, vo + Avg) =0
s(ug + Aug, vg + Avg) = 0

Use Taylor’s theorem we obtain

Or(uo, vo)
ou
0s(ug, vo) ds(ug, vo)

ou Ov

Solving this we obtain Aug and Awg, and therefore we have u; and v;. This procedure
is repeated until r and s are sufficiently small.

Or(ug, vo)

(g, vo) + Aug 5

+AUO ~ 0

s(ug, vo) + Aug + Awvg ~ 0



