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Functional (Fixed-Point) Iteration

Prime Objective

@ In what follows, it is important not to lose sight of our prime
objective:

v
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Functional (Fixed-Point) Iteration

Prime Objective

@ In what follows, it is important not to lose sight of our prime
objective:
@ Given a function f(x) where a < x < b, find values p such that

flp) =0

@ Given such a function, f(x), we now construct an auxiliary function
g(x) such that
p=g(p)

whenever f(p) = 0 (this construction is not unique).
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Functional (Fixed-Point) Iteration

Prime Objective

@ In what follows, it is important not to lose sight of our prime
objective:
@ Given a function f(x) where a < x < b, find values p such that

flp) =0

@ Given such a function, f(x), we now construct an auxiliary function
g(x) such that
p=g(p)
whenever f(p) = 0 (this construction is not unique).

@ The problem of finding p such that p = g(p) is known as the fixed
point problem.
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Theoretical Basis

Functional (Fixed-Point) Iteration

A Fixed Point

If g is defined on [a, b] and g(p) = p for some p € |a, b], then the
function g is said to have the fixed point p in [a, b].
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Functional (Fixed-Point) Iteration

A Fixed Point

If g is defined on [a, b] and g(p) = p for some p € |a, b], then the
function g is said to have the fixed point p in [a, b].

@ The fixed-point problem turns out to be quite simple both
theoretically and geometrically.
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Theoretical Basis

Functional (Fixed-Point) Iteration

A Fixed Point

If g is defined on [a, b] and g(p) = p for some p € |a, b], then the
function g is said to have the fixed point p in [a, b].

@ The fixed-point problem turns out to be quite simple both
theoretically and geometrically.

@ The function g(x) will have a fixed point in the interval [a, b]
whenever the graph of g(x) intersects the line y = x.
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Theoretical Basis

Functional (Fixed-Point) Iteration

The Equation f(x) = x —cos(x) =0
If we write this equation in the form:

X = cOos(x)

then g(x) = cos(x).
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Theoretical Basis

Single Nonlinear Equation f(x) = x — cos(x) =0

g(x) = cos(x)
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Theoretical Basis

Functional (Fixed-Point) Iteration

X = cos(x)

g(x) = cos(x)

v
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Theoretical Basis

Functional (Fixed-Point) Iteration

p = cos(p) p ~ 0.739 J

0.739

9(x) = cos(x)

1 X

0.739

V.
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Theoretical Basis

Existence of a Fixed Point

If g € Cla, b] and g(x) € [a, b] for all x € [a, b] then the function g has
a fixed point in [a, b].
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a fixed point in [a, b].

@ If g(a) = aor g(b) = b, the existence of a fixed point is obvious.
@ Suppose not; then it must be true that g(a) > aand g(b) < b.
@ Define h(x) = g(x) — x; his continuous on [a, b] and, moreover,

h(a) =g(a)—a> 0, h(b) = g(b) — b < 0.
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@ Define h(x) = g(x) — x; his continuous on [a, b] and, moreover,

h(a) =g(a)—a> 0, h(b) = g(b) — b < 0.

@ The Intermediate Value Theorem implies that there exists
p € (a, b) for which h(p) = 0.
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Existence of a Fixed Point

If g € Cla, b] and g(x) € [a, b] for all x € [a, b] then the function g has
a fixed point in [a, b].

@ If g(a) = aor g(b) = b, the existence of a fixed point is obvious.
@ Suppose not; then it must be true that g(a) > aand g(b) < b.
@ Define h(x) = g(x) — x; his continuous on [a, b] and, moreover,

h(a) =g(a)—a> 0, h(b) = g(b) — b < 0.

@ The Intermediate Value Theorem implies that there exists
p € (a, b) for which h(p) = 0.
@ Thus g(p) — p =0 and p is a fixed point of g.
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9(x) is Defined on [a, b]
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Theoretical Basis

a(x) € [a, b] for all x € [a, b]
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Theoretical Basis

9(x) has a Fixed Point in [a, b]
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Theoretical Basis

9(x) has a Fixed Point in [a, b]
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Theoretical Basis

Illustration

@ Consider the function g(x) =3 on 0 < x <1. g(x) is
continuous and since

g(x)=-3%log3<0 on [0, 1]

g(x) is decreasing on [0, 1].

Numerical Analysis (Chapter 2) Fixed-Point Iteration | R L Burden & J D Faires 15/59



Theoretical Basis

Illustration

@ Consider the function g(x) =3 on 0 < x <1. g(x) is
continuous and since

g(x)=-3%log3<0 on [0, 1]
g(x) is decreasing on [0, 1].
@ Hence ’
g(1)=35=9(x)=1=9(0)

i.e. g(x) € [0,1] for all x € [0, 1] and therefore, by the preceding
result, g(x) must have a fixed point in [0, 1].
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Functional (Fixed-Point) Iteration
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Functional (Fixed-Point) Iteration

An Important Observation
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Functional (Fixed-Point) Iteration

An Important Observation

@ It is fairly obvious that, on any given interval | = [a, b], g(x) may
have many fixed points (or none at all).
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Functional (Fixed-Point) Iteration

An Important Observation

@ ltis fairly obvious that, on any given interval | = [a, b], g(x) may
have many fixed points (or none at all).

@ In order to ensure that g(x) has a unique fixed point in /, we must
make an additional assumption that g(x) does not vary too rapidly.
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Theoretical Basis

Functional (Fixed-Point) Iteration

An Important Observation

@ It is fairly obvious that, on any given interval | = [a, b], g(x) may
have many fixed points (or none at all).

@ In order to ensure that g(x) has a unique fixed point in /, we must
make an additional assumption that g(x) does not vary too rapidly.

@ Thus we have to establish a uniqueness result.
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Theoretical Basis

Functional (Fixed-Point) Iteration

Uniqueness Result
Let g € Cla, b] and g(x) € [a, b] for all x € [a, b]. Further if g’(x) exists
on (a,b) and

g (x)| < k<1, Vx¢€]lab],

then the function g has a unique fixed point p in [a, b].
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Theoretical Basis

g'(x) is Defined on [a, b]

g'(x)
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Theoretical Basis

-1 <g'(x) < 1forall x € [a, b]

g'(x)
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Theoretical Basis

Unique Fixed Point: |g'(x)| < 1 for all x € [a, b]
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Theoretical Basis

Functional (Fixed-Point) Iteration

Proof of Uniqueness Result
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Theoretical Basis

Functional (Fixed-Point) Iteration

Proof of Uniqueness Result

@ Assuming the hypothesis of the theorem, suppose that p and g
are both fixed points in [a, b] with p # q.
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Theoretical Basis

Functional (Fixed-Point) Iteration

Proof of Uniqueness Result

@ Assuming the hypothesis of the theorem, suppose that p and g
are both fixed points in [a, b] with p # q.

@ By the Mean Value Theorem , @ number ¢ exists
between p and g and hence in [a, b] with

lp—al =1lg(p) — 9(q)l
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Functional (Fixed-Point) Iteration

Proof of Uniqueness Result

@ Assuming the hypothesis of the theorem, suppose that p and g
are both fixed points in [a, b] with p # q.

@ By the Mean Value Theorem , @ number ¢ exists
between p and g and hence in [a, b] with

lp—al=1g(p) —9(q)l = |g'&)|lp—q

Numerical Analysis (Chapter 2) Fixed-Point Iteration | R L Burden & J D Faires 22/59



Theoretical Basis

Functional (Fixed-Point) Iteration

Proof of Uniqueness Result

@ Assuming the hypothesis of the theorem, suppose that p and g
are both fixed points in [a, b] with p # q.

@ By the Mean Value Theorem , @ number ¢ exists
between p and g and hence in [a, b] with

lp—al=1g(p) —9(q)l = |g'&)|lp—q
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Functional (Fixed-Point) Iteration

Proof of Uniqueness Result

@ Assuming the hypothesis of the theorem, suppose that p and g
are both fixed points in [a, b] with p # q.

@ By the Mean Value Theorem , @ number ¢ exists
between p and g and hence in [a, b] with

lp—al=1g(p) —9(q)l = |g'&)|lp—q
< klp—q
< |p—dq

which is a contradiction.
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Functional (Fixed-Point) Iteration

Proof of Uniqueness Result

@ Assuming the hypothesis of the theorem, suppose that p and g
are both fixed points in [a, b] with p # q.

@ By the Mean Value Theorem , @ number ¢ exists
between p and g and hence in [a, b] with

lp—al=1g(p) —9(q)l = |g'&)|lp—q
< klp—q
< |p—dq

which is a contradiction.
@ This contradiction must come from the only supposition, p # q.
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Theoretical Basis

Functional (Fixed-Point) Iteration

Proof of Uniqueness Result

@ Assuming the hypothesis of the theorem, suppose that p and g
are both fixed points in [a, b] with p # q.

@ By the Mean Value Theorem , @ number ¢ exists
between p and g and hence in [a, b] with

lp—ql=19(p) —9(@) = |9©)]|lp-q
< Klp—q
< |p—q|
which is a contradiction.

@ This contradiction must come from the only supposition, p # q.
@ Hence, p = g and the fixed point in [a, b] is unique.
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9 Motivating the Algorithm: An Example
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Example

A Single Nonlinear Equaton

Model Problem
Consider the quadratic equation:

x> —x-1=0
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Example

A Single Nonlinear Equaton

Model Problem

Consider the quadratic equation:

x>—x—-1=0

v

Positive Root

The positive root of this equations is:

1+6
X = >

~ 1.618034

A,
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Example

Single Nonlinear Equation f(x) = x2 —x —1=0

We can convert this equation into a fixed-point problem.
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Formulation |

Single Nonlinear Equation f(x) = x2 —x —1=0

One Possible Formulation for g(x)

Transpose the equation f(x) = 0 for variable x:
x>—x—-1 =0
= x> = x+1
= X = E£Vvx-+1 )
g(x)=vx+1 J
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Formulation |

Xni1 =9 (Xn) = VXp+ 1T with xp =0

v
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Formulation |

Fixed Point:

g(x) = Vx+1

Xxo=0

Pn

Pn1

|Pn+1 — Pn

OO WON =S

0.000000000
1.000000000
1.414213562
1.553773974
1.598053182

1.000000000
1.414213562
1.553773974
1.598053182
1.611847754

1.000000000
0.414213562
0.139560412
0.044279208
0.013794572

Numerical Analysis (Chapter 2)

Fixed-Point lteration |

R L Burden & J D Faires

29/59



Formulation |
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Formulation |

Zo
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Formulation |

y
y=u
g(z) =vz+1 T
X T
X
Zo
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Formulation |

y
y=u
g(z) =vVa+1 T
|
T T
X
Zo
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Formulation |

Xni1 =9 (Xn) = VXp+ 1T with xp =0

Rate of Convergence
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Formulation |

Xni1 =9 (Xn) = VXp+ 1T with xp =0

Rate of Convergence

We require that |g’(x)| < k < 1. Since

1

gx)=vx+1 and Jg(x)= eV TS

>0 for x>0
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Formulation |

Xni1 =9 (Xn) = VXp+ 1T with xp =0

Rate of Convergence

We require that |g’(x)| < k < 1. Since

1
x)=+vx+1 and '(x) = ——— >0 for x>0
9(x) 9'(x) o T >
we find that
’(x)—¥<1 foraIIx>—§
I = o/ 4
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Formulation |

Xni1 =9 (Xn) = VXp+ 1T with xp =0

Rate of Convergence

We require that |g’(x)| < k < 1. Since

1
x)=+vx+1 and '(x) = ——— >0 for x>0
9(x) 9'(x) NSl >
we find that
’(x)—¥<1 foraIIx>—§
I = o/ 4

g’ (p) ~ 0.30902
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Theoretical Basis

Example

Formulation |

Formulation Il

Fixed Point: g(x)=vx+1 po=0
n Pn—1 Pn | |Pn—Pn_1| | €n/€n—1
1 [ 0.0000000 | 1.0000000 | 1.0000000 —
2 | 1.0000000 | 1.4142136 | 0.4142136 | 0.41421
3 | 1.4142136 | 1.5537740 | 0.1395604 | 0.33693
4 | 1.5537740 | 1.5980532 | 0.0442792 | 0.31728
5 | 1.5980532 | 1.6118478 | 0.0137946 | 0.31154
12 | 1.6180286 | 1.6180323 | 0.0000037 | 0.30902
13 | 1.6180323 | 1.6180335 | 0.0000012 | 0.30902
14 | 1.6180335 | 1.6180338 | 0.0000004 | 0.30902
15 | 1.6180338 | 1.6180339 | 0.0000001 | 0.30902
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Formulation Il

Outline

@ Fixed-Point Formulation I
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Formulation Il

Single Nonlinear Equation f(x) = x2 —x —1=0

A Second Formulation for g(x)
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Single Nonlinear Equation f(x) = x2 —x —1=0

A Second Formulation for g(x)
Transpose the equation f(x) = 0 for variable x:

X-x—-1 =0
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Formulation Il

Single Nonlinear Equation f(x) = x2 —x —1=0

A Second Formulation for g(x)
Transpose the equation f(x) = 0 for variable x:

xX>—-x—-1 =0

= X2 = x+1
1

= X = 1+ -—
X
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Formulation Il

Single Nonlinear Equation f(x) = x2 —x —1=0

A Second Formulation for g(x)

Transpose the equation f(x) = 0 for variable x:
x>—x—-1 =0

= X2 = x+1

1

= X = 1+ -—

X v

(x)=1+ 1
g = X

Numerical Analysis (Chapter 2) Fixed-Point Iteration | R L Burden & J D Faires 41/59



Formulation Il

X1 = g (Xp) = Xln+1 with xp = 1
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Formulation Il

Fixed Point:

1
Q(X):;Jr1

X0:1

Pn

Pn+1

|Pns1 — Pnl

O~ ON =S

1.000000000
2.000000000
1.500000000
1.666666667
1.600000000

2.000000000
1.500000000
1.666666667
1.600000000

1.625000000

1.000000000
0.500000000
0.166666667
0.066666667
0.025000000
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Zo
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Zo

T2

Numerical Analysis (Chapter 2) Fixed-Point Iteration |

R L Burden & J D Faires

45/59



glz) =3 +1
Yy=x

X T

x3

-

T2 T2
Zo
1 X

Numerical Analysis (Chapter 2) Fixed-Point Iteration | R L Burden & J D Faires 46 /59



glz) =3 +1
Yy=x

X T

x3

-

T2 T2
Zo
1 X

Numerical Analysis (Chapter 2) Fixed-Point Iteration | R L Burden & J D Faires

47 /59



glz) =3 +1
Yy=x

X T

x3

-

T2 T2
Zo
1 X

Numerical Analysis (Chapter 2) Fixed-Point Iteration | R L Burden & J D Faires

48 /59



glz) =3 +1
Yy=x

X T

x3

-

T2 T2
Zo
1 X

Numerical Analysis (Chapter 2) Fixed-Point Iteration | R L Burden & J D Faires

49/59



glz) =3 +1
Yy=x

X T

x3

-

T2 T2
Zo
1 X

Numerical Analysis (Chapter 2) Fixed-Point Iteration | R L Burden & J D Faires

50/59



Formulation Il

X1 = g (Xp) = Xln+1 with xp = 1

Rate of Convergence
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Formulation Il

X1 = g (Xp) = Xln+1 with xp = 1

Rate of Convergence

We require that |g'(x)| < k < 1. Since

1 1
g(x):;+1 and g’(x):—p<0forx

we find that

) — ]
g()—ﬁ

> —1 forall x > 1

g (p) ~ —0.38197
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Theoretical Basis

Example

Formulation |

Formulation Il

Fixed Point: a(x) = % +1 po =1
n Pn-1 Pn | |Pn—Pn-1| | €n/€n-1
1 | 1.0000000 | 2.0000000 | 1.0000000 =
2 | 2.0000000 | 1.5000000 | 0.5000000 | 0.50000
3 | 1.5000000 | 1.6666667 | 0.1666667 | 0.33333
4 | 1.6666667 | 1.6000000 | 0.0666667 | 0.40000
5 | 1.6000000 | 1.6250000 | 0.0250000 | 0.37500
12 | 1.6180556 | 1.6180258 | 0.0000298 | 0.38197
13 | 1.6180258 | 1.6180371 | 0.0000114 | 0.38196
14 | 1.6180371 | 1.6180328 | 0.0000043 | 0.38197
15 | 1.6180328 | 1.6180344 | 0.0000017 | 0.38197
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Questions?



Reference Material



Intermediate Value Theorem

If f € C[a, b] and K is any number between f(a) and f(b), then there
exists a number ¢ € (a, b) for which f(c) = K.
DAY
(a, f(a))
fla) +
K _________________
|
fb) + '
i (b, &)
- : >
a ¢ b %L

(The diagram shows one of 3 possibilities for this function and interval.)



Mean Value Theorem: lllustration (1/3)

Assume that f € C[a, b] and f is differentiable on (a, b). ]

f(b)

f(x)

f(a)




Mean Value Theorem: lllustration (2/3)

Measure the slope of the line joining a, f(a)] and [b, f(b)].

(b)

f(a)

slope — {)=fta)

f(x)




Mean Value Theorem: lllustration (3/3)

Then a number ¢ exists such that

i) slope = HH= 1)

slope = f'(c)
f(x)

f@ |




Mean Value Theorem

If f € Cla, b] and f is differentiable on (a, b), then a number c exists

such that
f(b) — f(a)

fle) = b—a

Parallel lines

Slope f'(c)
y=r

f) — fla@)
b—a
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