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Theoretical Basis Example Formulation I Formulation II

Functional (Fixed-Point) Iteration

Prime Objective
In what follows, it is important not to lose sight of our prime
objective:

Given a function f (x) where a ≤ x ≤ b, find values p such that

f (p) = 0

Given such a function, f (x), we now construct an auxiliary function
g(x) such that

p = g(p)

whenever f (p) = 0 (this construction is not unique).
The problem of finding p such that p = g(p) is known as the fixed
point problem.
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Functional (Fixed-Point) Iteration

A Fixed Point
If g is defined on [a, b] and g(p) = p for some p ∈ [a, b], then the
function g is said to have the fixed point p in [a, b].

Note
The fixed-point problem turns out to be quite simple both
theoretically and geometrically.
The function g(x) will have a fixed point in the interval [a, b]
whenever the graph of g(x) intersects the line y = x .
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Functional (Fixed-Point) Iteration

The Equation f (x) = x − cos(x) = 0
If we write this equation in the form:

x = cos(x)

then g(x) = cos(x).
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Single Nonlinear Equation f (x) = x − cos(x) = 0

y

x

1

1

−1

g(x) = cos(x)
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Functional (Fixed-Point) Iteration

x = cos(x)
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Functional (Fixed-Point) Iteration

p = cos(p) p ≈ 0.739
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x

g(x) = cos(x)
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Existence of a Fixed Point
If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b] then the function g has
a fixed point in [a, b].

Proof
If g(a) = a or g(b) = b, the existence of a fixed point is obvious.
Suppose not; then it must be true that g(a) > a and g(b) < b.
Define h(x) = g(x)− x ; h is continuous on [a, b] and, moreover,

h(a) = g(a)− a > 0, h(b) = g(b)− b < 0.

The Intermediate Value Theorem IVT implies that there exists
p ∈ (a, b) for which h(p) = 0.
Thus g(p)− p = 0 and p is a fixed point of g.

Numerical Analysis (Chapter 2) Fixed-Point Iteration I R L Burden & J D Faires 10 / 59



Theoretical Basis Example Formulation I Formulation II

Existence of a Fixed Point
If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b] then the function g has
a fixed point in [a, b].

Proof
If g(a) = a or g(b) = b, the existence of a fixed point is obvious.

Suppose not; then it must be true that g(a) > a and g(b) < b.
Define h(x) = g(x)− x ; h is continuous on [a, b] and, moreover,

h(a) = g(a)− a > 0, h(b) = g(b)− b < 0.

The Intermediate Value Theorem IVT implies that there exists
p ∈ (a, b) for which h(p) = 0.
Thus g(p)− p = 0 and p is a fixed point of g.

Numerical Analysis (Chapter 2) Fixed-Point Iteration I R L Burden & J D Faires 10 / 59



Theoretical Basis Example Formulation I Formulation II

Existence of a Fixed Point
If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b] then the function g has
a fixed point in [a, b].

Proof
If g(a) = a or g(b) = b, the existence of a fixed point is obvious.
Suppose not; then it must be true that g(a) > a and g(b) < b.

Define h(x) = g(x)− x ; h is continuous on [a, b] and, moreover,

h(a) = g(a)− a > 0, h(b) = g(b)− b < 0.

The Intermediate Value Theorem IVT implies that there exists
p ∈ (a, b) for which h(p) = 0.
Thus g(p)− p = 0 and p is a fixed point of g.

Numerical Analysis (Chapter 2) Fixed-Point Iteration I R L Burden & J D Faires 10 / 59



Theoretical Basis Example Formulation I Formulation II

Existence of a Fixed Point
If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b] then the function g has
a fixed point in [a, b].

Proof
If g(a) = a or g(b) = b, the existence of a fixed point is obvious.
Suppose not; then it must be true that g(a) > a and g(b) < b.
Define h(x) = g(x)− x ; h is continuous on [a, b] and, moreover,

h(a) = g(a)− a > 0, h(b) = g(b)− b < 0.

The Intermediate Value Theorem IVT implies that there exists
p ∈ (a, b) for which h(p) = 0.
Thus g(p)− p = 0 and p is a fixed point of g.

Numerical Analysis (Chapter 2) Fixed-Point Iteration I R L Burden & J D Faires 10 / 59



Theoretical Basis Example Formulation I Formulation II

Existence of a Fixed Point
If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b] then the function g has
a fixed point in [a, b].

Proof
If g(a) = a or g(b) = b, the existence of a fixed point is obvious.
Suppose not; then it must be true that g(a) > a and g(b) < b.
Define h(x) = g(x)− x ; h is continuous on [a, b] and, moreover,

h(a) = g(a)− a > 0, h(b) = g(b)− b < 0.

The Intermediate Value Theorem IVT implies that there exists
p ∈ (a, b) for which h(p) = 0.

Thus g(p)− p = 0 and p is a fixed point of g.

Numerical Analysis (Chapter 2) Fixed-Point Iteration I R L Burden & J D Faires 10 / 59



Theoretical Basis Example Formulation I Formulation II

Existence of a Fixed Point
If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b] then the function g has
a fixed point in [a, b].

Proof
If g(a) = a or g(b) = b, the existence of a fixed point is obvious.
Suppose not; then it must be true that g(a) > a and g(b) < b.
Define h(x) = g(x)− x ; h is continuous on [a, b] and, moreover,

h(a) = g(a)− a > 0, h(b) = g(b)− b < 0.

The Intermediate Value Theorem IVT implies that there exists
p ∈ (a, b) for which h(p) = 0.
Thus g(p)− p = 0 and p is a fixed point of g.

Numerical Analysis (Chapter 2) Fixed-Point Iteration I R L Burden & J D Faires 10 / 59



Theoretical Basis Example Formulation I Formulation II

g(x) is Defined on [a, b]

y

x
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g(x)
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g(x) ∈ [a, b] for all x ∈ [a, b]
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g(x) has a Fixed Point in [a, b]

y

x
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g(x) has a Fixed Point in [a, b]

y

x

y 5 x

y 5 g(x)

p 5 g(p)

a p b

a

b
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Illustration

Consider the function g(x) = 3−x on 0 ≤ x ≤ 1. g(x) is
continuous and since

g′(x) = −3−x log 3 < 0 on [0, 1]

g(x) is decreasing on [0, 1].
Hence

g(1) =
1
3
≤ g(x) ≤ 1 = g(0)

i.e. g(x) ∈ [0, 1] for all x ∈ [0, 1] and therefore, by the preceding
result, g(x) must have a fixed point in [0, 1].
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Functional (Fixed-Point) Iteration

g(x) = 3−x

x

y

1

1

y 5 x

y 5 32x

s1, ad
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Functional (Fixed-Point) Iteration

An Important Observation

It is fairly obvious that, on any given interval I = [a, b], g(x) may
have many fixed points (or none at all).
In order to ensure that g(x) has a unique fixed point in I, we must
make an additional assumption that g(x) does not vary too rapidly.
Thus we have to establish a uniqueness result.
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Functional (Fixed-Point) Iteration

Uniqueness Result
Let g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b]. Further if g′(x) exists
on (a, b) and

|g′(x)| ≤ k < 1, ∀ x ∈ [a, b],

then the function g has a unique fixed point p in [a, b].
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g′(x) is Defined on [a, b]
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x

a b

g‘(x)
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−1 ≤ g′(x) ≤ 1 for all x ∈ [a, b]
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a b
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−1

g‘(x)
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Unique Fixed Point: |g′(x)| ≤ 1 for all x ∈ [a, b]
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Functional (Fixed-Point) Iteration

Proof of Uniqueness Result

Assuming the hypothesis of the theorem, suppose that p and q
are both fixed points in [a, b] with p 6= q.
By the Mean Value Theorem MVT Illustration , a number ξ exists
between p and q and hence in [a, b] with

|p − q| = |g(p)− g(q)| =
∣∣g′(ξ)

∣∣ |p − q|
≤ k |p − q|
< |p − q|

which is a contradiction.
This contradiction must come from the only supposition, p 6= q.
Hence, p = q and the fixed point in [a, b] is unique.
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Outline

1 Introduction & Theoretical Framework

2 Motivating the Algorithm: An Example

3 Fixed-Point Formulation I

4 Fixed-Point Formulation II
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A Single Nonlinear Equaton

Model Problem
Consider the quadratic equation:

x2 − x − 1 = 0

Positive Root
The positive root of this equations is:

x =
1 +

√
5

2
≈ 1.618034
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Single Nonlinear Equation f (x) = x2 − x − 1 = 0

y

x

1−

−1−

1−1 1.5

y = x2 − x − 1

We can convert this equation into a fixed-point problem.
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Single Nonlinear Equation f (x) = x2 − x − 1 = 0

One Possible Formulation for g(x)

Transpose the equation f (x) = 0 for variable x :

x2 − x − 1 = 0
⇒ x2 = x + 1
⇒ x = ±

√
x + 1

g(x) =
√

x + 1
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Theoretical Basis Example Formulation I Formulation II

xn+1 = g (xn) =
√

xn + 1 with x0 = 0

y

x

g(x) =
√

x + 1

y = x

x0
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Theoretical Basis Example Formulation I Formulation II

Fixed Point: g(x) =
√

x + 1 x0 = 0

n pn pn+1 |pn+1 − pn|
1 0.000000000 1.000000000 1.000000000
2 1.000000000 1.414213562 0.414213562
3 1.414213562 1.553773974 0.139560412
4 1.553773974 1.598053182 0.044279208
5 1.598053182 1.611847754 0.013794572
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Theoretical Basis Example Formulation I Formulation II

xn+1 = g (xn) =
√

xn + 1 with x0 = 0

Rate of Convergence

We require that |g′(x)| ≤ k < 1. Since

g(x) =
√

x + 1 and g′(x) =
1

2
√

x + 1
> 0 for x ≥ 0

we find that

g′(x) =
1

2
√

x + 1
< 1 for all x > −3

4

Note

g′(p) ≈ 0.30902
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Theoretical Basis Example Formulation I Formulation II

Fixed Point: g(x) =
√

x + 1 p0 = 0

n pn−1 pn |pn − pn−1| en/en−1
1 0.0000000 1.0000000 1.0000000 —
2 1.0000000 1.4142136 0.4142136 0.41421
3 1.4142136 1.5537740 0.1395604 0.33693
4 1.5537740 1.5980532 0.0442792 0.31728
5 1.5980532 1.6118478 0.0137946 0.31154
...

...
...

...
...

12 1.6180286 1.6180323 0.0000037 0.30902
13 1.6180323 1.6180335 0.0000012 0.30902
14 1.6180335 1.6180338 0.0000004 0.30902
15 1.6180338 1.6180339 0.0000001 0.30902
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Theoretical Basis Example Formulation I Formulation II

Outline
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2 Motivating the Algorithm: An Example
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4 Fixed-Point Formulation II
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Theoretical Basis Example Formulation I Formulation II

Single Nonlinear Equation f (x) = x2 − x − 1 = 0

A Second Formulation for g(x)

Transpose the equation f (x) = 0 for variable x :

x2 − x − 1 = 0
⇒ x2 = x + 1

⇒ x = 1 +
1
x

g(x) = 1 +
1
x
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Theoretical Basis Example Formulation I Formulation II

xn+1 = g (xn) = 1
xn

+ 1 with x0 = 1

y

x1

g(x) = 1

x
+ 1

y = x

Numerical Analysis (Chapter 2) Fixed-Point Iteration I R L Burden & J D Faires 42 / 59



Theoretical Basis Example Formulation I Formulation II

Fixed Point: g(x) =
1
x

+ 1 x0 = 1

n pn pn+1 |pn+1 − pn|
1 1.000000000 2.000000000 1.000000000
2 2.000000000 1.500000000 0.500000000
3 1.500000000 1.666666667 0.166666667
4 1.666666667 1.600000000 0.066666667
5 1.600000000 1.625000000 0.025000000
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Theoretical Basis Example Formulation I Formulation II

xn+1 = g (xn) = 1
xn

+ 1 with x0 = 1

Rate of Convergence

We require that |g′(x)| ≤ k < 1. Since

g(x) =
1
x

+ 1 and g′(x) = − 1
x2 < 0 for x

we find that

g′(x) =
1

2
√

x + 1
> −1 for all x > 1

Note

g′(p) ≈ −0.38197
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Theoretical Basis Example Formulation I Formulation II

Fixed Point: g(x) =
1
x

+ 1 p0 = 1

n pn−1 pn |pn − pn−1| en/en−1
1 1.0000000 2.0000000 1.0000000 —
2 2.0000000 1.5000000 0.5000000 0.50000
3 1.5000000 1.6666667 0.1666667 0.33333
4 1.6666667 1.6000000 0.0666667 0.40000
5 1.6000000 1.6250000 0.0250000 0.37500
...

...
...

...
...

12 1.6180556 1.6180258 0.0000298 0.38197
13 1.6180258 1.6180371 0.0000114 0.38196
14 1.6180371 1.6180328 0.0000043 0.38197
15 1.6180328 1.6180344 0.0000017 0.38197
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Questions?



Reference Material



Intermediate Value Theorem

If f ∈ C[a, b] and K is any number between f (a) and f (b), then there
exists a number c ∈ (a, b) for which f (c) = K .

x

y

 f (a)

 f (b)

y 5 f (x)

K

(a,  f (a))

(b,  f (b))

a bc

(The diagram shows one of 3 possibilities for this function and interval.)
Return to Existence Theorem



Mean Value Theorem: Illustration (1/3)

Assume that f ∈ C[a, b] and f is differentiable on (a, b).

y

x

f(x)

a b

f(a)

f(b)



Mean Value Theorem: Illustration (2/3)

Measure the slope of the line joining a, f (a)] and [b, f (b)].

y

x

f(x)

a b

f(a)

f(b)
slope =

f(b)−f(a)
b−a



Mean Value Theorem: Illustration (3/3)

Then a number c exists such that

f ′(c) =
f (b)− f (a)

b − a

y

x

c

f(x)

a b

f(a)

f(b)

slope = f ′(c)

slope = f(b)−f(a)
b−a



Mean Value Theorem

If f ∈ C[a, b] and f is differentiable on (a, b), then a number c exists
such that

f ′(c) =
f (b)− f (a)

b − a

y

xa bc

Slope f 9(c)

Parallel lines

Slope
b 2 a

f (b) 2 f (a)

y 5 f (x)

Return to Fixed-Point Uniqueness Theorem
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